Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
современная генетика т2.doc
Скачиваний:
190
Добавлен:
21.02.2016
Размер:
9.54 Mб
Скачать

Общая картина метаболизма днк

Первоначальные взгляды на структуру ДНК были главным образом основаны на представлении о достаточно жесткой двойной спирали, в которой система водородных связей между комплементарными основаниями прочно связывает между собой спирализованные сахарофосфатные остовы обеих цепей. Дополнительную прочность молекулам ДНК придают взаимодействия гидрофобной природы, так называемые

Айала ф., Кайгер Дж. Современная генетика: в 3-х т. Т. 2. Пер. С англ.: – м.: Мир, 1988. – 368 с.

14. Рекомбинация 163

стэкинг-взаимодействия, между соседними парами оснований. Жесткость структуры ДНК гарантирует надежность хранения наследственной информации, закодированной в последовательности оснований.

Однако открытие Z-формы ДНК, а также установление способности определенных участков ДНК легко переходить из B-формы в Z-форму продемонстрировали ограниченность представлений о совершенно монотонной жесткой структуре ДНК. Следует признать, что ДНК скорее присуща мобильность структуры, способность к спонтанному изменению конформации в довольно широких пределах.

Изучение метаболизма ДНК, поначалу направленное в основном на уточнение деталей механизма полуконсервативной репликации, позволило обнаружить необычайное множество ферментов и других белков, придающих молекулам ДНК in vivo еще большую структурно-функциональную мобильность. На сегодняшний день ясно, что сохранность закодированной в ДНК информации, предназначенной для передачи последующим поколениям, обеспечивается скорее за счет активного метаболизма, нежели просто за счет стабильности, присущей самой структуре ДНК.

В этом метаболизме активную роль играют комплементарные взаимодействия между основаниями. Феномен комплементарности обеспечивает такие процессы, как полуконсервативная репликация, контроль точности считывания, исправление ошибок и репарация повреждений структуры, возникающих под действием различных факторов окружающей среды. Комплементарные взаимодействия играют также важнейшую роль в процессах общей и сайт-специфической рекомбинации. И в то же время их влияние на различные аспекты метаболизма ДНК не является абсолютным. Так, в случае особенно сильных повреждений ДНК действие репарационной SOS-системы может направляться по пути поддержания общей целостности хромосомы, даже в ущерб требованиям принципа комплементарности, и таким образом приводить к закреплению некоторых мутационных изменений. Участие белка RecA E. сой как в общей рекомбинации, так и в активации репарационного действия SOS-системы является поистине удивительным примером эволюционного «нововведения», связующего воедино два различных аспекта метаболизма ДНК.

С другой стороны, подвижные генетические элементы, ретровирусы и другие молекулярные системы, функционирование которых основано на незаконной рекомбинации, располагают ферментативным аппаратом, который позволяет им действовать как бы независимо от принципа комплементарности, обычно играющего ключевую роль в процессах метаболизма ДНК. Функциональные особенности этих элементов дают им возможность направлять рекомбинацию между негомологичными последовательностями. Подвижные элементы широко распространены как у прокариот, так и у эукариот, что указывает на определенные эволюционные преимущества, вероятно связанные именно со способностью к такого рода рекомбинационным процессам, которую эти элементы придают содержащим их последовательностям ДНК. Не вызывает сомнений, что, несмотря на необходимое постоянство структуры, обусловленное самим информационным значением ДНК, она в то же время обладает существенной метаболической активностью, связанной с потребностями структурной эволюции.