Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
1-90 биофизика.doc
Скачиваний:
192
Добавлен:
14.04.2019
Размер:
1.28 Mб
Скачать
  1. Причины высоких значений потенциала переноса при гидролизе ди- и полифосфатов. Разнообразие макроэргических соединений в биосистемах.

(см. вопрос 22)

Причины – хз!(((

В качестве меры потенциала переноса фосфатных групп у высокоэнергетических соединений произвольно выбрано изменение свободной энергии гидролиза ΔGo'. Потенциал переноса электронов такой системы (т.е. склонность системы отдавать и принимать электроны) определяется ее окислительно-восстановительным потенциалом в стандартных условиях (стандартным восстановительным потенциалом E° и соответственно Е°' при pH 7). В качестве меры химического потенциала переноса протона кислотно-основной пары служит величина рКа — отрицательный логарифм константы диссоциации кислоты Ка. Чем сильнее кислота, тем меньше ее рКа. Кислоты с небольшими pKа могут протонировать основания с высокими рКа.

!!! Самые макроэргические соединения (он давал): 1) ацетиладенилат – 62,5 кДж; 2) фосфоенолпируват – 61 кДж; 3) 1,3-дифосфоглицерат 54,5 кДж; 4) карбомоилфосфат 51,5 кДж; 5) ацетилфосфат 47,5 кДж; 6) ацетилкоэнзим А – 35-48кДж; 7) S-аденозинметионин 44 кДж; 8) креатинфосфат 42,5 кДж; 9) АТФ 35 кДж; 10) пирофосфат 32,5 кДж.

Макроэргические соединения – характ-ся наличием фосфатных групп. Энергия, освобождающаяся при отщеплении фосфатных групп, может исп-ся для синтеза био важных в-в с повышенным запасом свободной энергии и для процессов жизнедеятельности, связанных с превращением свободной хим. Е в работу (механич., активного переноса в-в, электрическую и т.д.).

Фосфоенолпируват и 1,3-дифосфоглицерат. Оба соединения являются промежуточными продуктами гликолиза. Сукцинил-КоА, гидролиз которого до сукцината сопряжен в цитратном цикле с синтезом ГТФ. Креатинфосфат, с помощью которого в мышце при необходимости может регенерироваться АТФ.

  1. Типы энергетического обмена в биосистемах

Энергетический обмен – совокупность р-ций, сопровождающийся освобождением Е. Белки - 17,6 кДж (Количество высвобожденной энергии на 1 гр.), углеводы - 17,6 кДж, жиры - 38,9 кДж. Основное значение эн. обмена в том, что при разрушении сложных орг. в-в высвобождается Е, необходимая для реакций биосинтеза. Этапы энерг. обмена: 1) Подготовительный — Проходит в ЖКТ животных и человека и пищевар. вакуолях одноклеточных организмов. Сложные орг в-ва расщепляются до простых соединений, мономеров → в кровь → претерпевают дальнейшие изменения. Расщепление в лизосомах полисахаридов до моносахаридов, жиров до глицерина и жирных кислот, белков до аминокислот, нуклеиновых кислот до нуклеотидов. Вся Е рассеивается в виде тепла.; 2) бескислородный (=гликолиз, аэробный) — окисление в-в без участия кислорода до более простых. Глюкоза расщепляется на 2 молекулы ПВК. Если гликолиз идёт в мышцах, то получается молочная кислота. Осуществление процесса на внешних мембранах митохондрий при участии ферментов. Итог: 2 м-лы АТФ, 2 ПВК (дальнейшая судьба ПВК зависит от условий: если О2 нет - брожение), 2 НАД∙Н + Н+ (источник протонов, накапливаются в перемитохондриальном пространстве), 80кДж накапливается (идет на синтез АТФ), остальная энергия рассеивается в виде тепла; 3) кислородный — (клеточное дыхание) дальнейшее превращение ПВК в условиях О2 происходит в митохондриях. Суть: полное окисление глюкозы до СО2 и Н2О. Стадии: 1) окислительное декарбоксилирование ПВК; 2) цикл Кребса = цикл трикарбоновых кислот . Итог 1 и 2: на 1 молекулу ПВК – 3 СО2 (в атмосферу), 8 НАД∙Н + Н+, 1 ФАД∙Н + Н+, 2 АТФ; 3) электрон-транспортная цепь. Условие – мембраны митохондрий не должны быть повреждены. Проходит на мембранах крист. Итог: запасается 55% энергии и 45 % рассеивается в виде тепла. 34 АТФ.

Суммарное уравнение всего энергетического обмена:

С6Н12О6 + 6О2 + 6Н2О + 38АДФ + 38Н3РО4 → 6СО2 + 12Н2О + 38АТФ.

Сходство эн. обмена в клетках растений, животных, человека и грибов — доказательство их родства.

Броже́ние — это анаэробный метаболический распад молекул питательных веществ, например глюкозы, без окисления в чистом виде. Брожение не высвобождает всю имеющуюся в молекуле энергию; оно просто позволяет продолжаться гликолизу (процесс, выходом которого на одну молекулу глюкозы являются две молекулы АТФ), восполняя восстановленные коферменты. Результатом брожения являются этанол, углекислый газ, другие продукты, а далее -молочная кислота, уксусная кислота, этилен и другие восстановленные метаболиты.