Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
1-90 биофизика.doc
Скачиваний:
192
Добавлен:
14.04.2019
Размер:
1.28 Mб
Скачать

59 Физические свойства белков , денатурация, ренатурация. Биороль

Природные белковые тела наделены определенной, строго заданной пространственной конфигурацией и обладают рядом характерных физико-химических и биологических свойств при физиологических значениях температуры и рН среды. Под влиянием различных физических и химических факторов белки подвергаются свертыванию и выпадают в осадок, теряя нативные свойства. под денатурацией следует понимать нарушение общего плана уникальной структуры нативной молекулы белка, преимущественно ее третичной структуры, приводящее к потере характерных для нее свойств (растворимость, электрофоретическая подвижность, биологическая активность и т.д.). Большинство белков денатурирует при нагревании их растворов выше 50–60°С.

Внешние проявления денатурации сводятся к потере растворимости, особенно в изоэлектрической точке, повышению вязкости белковых растворов, увеличению количества свободных функциональных SH-групп и изменению характера рассеивания рентгеновских лучей. Наиболее характерным признаком денатурации является резкое снижение или полная потеря белком его биологической активности (каталитической, антигенной или гормональной). При денатурации белка, вызванной 8М мочевиной или другим агентом, разрушаются в основном нековалентные связи (в частности, гидрофобные взаимодействия и водородные связи). Дисульфидные связи в присутствии восстанавливающего агента меркаптоэтанола разрываются, в то время как пептидные связи самого остова полипептидной цепи не затрагиваются. В этих условиях развертываются глобулы нативных белковых молекул и образуются случайные и беспорядочные структуры

При непродолжительном действии и быстром удалении денатурирующих агентов возможна ренатурация белка с полным восстановлением исходной трехмерной структуры и нативных свойств его молекулы включая биологическую активность. Таким образом, при денатурации белковая молекула полностью теряет биологические свойства, демонстрируя тем самым тесную связь между структурой и функцией. Для практических целей иногда используют процесс денатурации в «мягких» условиях, например при получении ферментов или других биологически активных белковых препаратов в условиях низких температур в присутствии солей и при соответствующем значении рН . При лиофилизации белков (высушивание в вакууме путем возгонки влаги из замороженного состояния) для предотвращения денатурации часто пользуются химическими веществами (простые сахара, глицерин, органические анионы).

60 Биофизика нуклеиновых кислот (нк):строение полипептидной цепи, особенности пространственной сьруктуры

НК являются обязательными участниками процессов синтеза белков. Основная цепь НК состоит из чередующихся звеньев фосфорной кислоты и сахара (рибозы в РНК; дезоксирибозы в ДНК). К сахарам присоединяются азотистые основания, которые уже не повторяют друг друга.

Общая схема строения цепи:

Рибоза

Дезоксирибоза

Подобно тому, как в белках фигурируют 20 аминокислотных остатков, так в ДНК и РНК фигурируют 4 азотистых основания. Но это правило менее строгое и наряду с каноническими основаниями встречаются производные от них - минорные основания. В ДНК фигурируют цитозин (Ц), тимин (Т), аденин (А), гуанин (Г); в РНК - цитозин (Ц), тимин (Т), аденин (А), урацил (У).

Для всех азотистых оснований характерно наличие центрального кольца по типу бензольного. Наличие двойных связей приводит к наличию делокализованных электронов, принадлежащих всему кольцу.

Соединения азотистых оснований с рибозой и дезоксирибозой называются нуклеозидами ( соответственно, рибонуклеозиды и дезоксирибонуклеозиды).

Аналогичные нуклеозиды Г, Т, У называются соответственно: гуанозин, тимидин, уридин.

В результате фосфорелирования образуются ди- и трифосфаты. Эти мономерные соединения играют важнейшую роль в биоэнергетических процессах.

Вместо R: Аденозиндифосфат (АДФ), Аденозинтрифосфат (АТФ):

Образование нуклеиновой кислоты происходит путем поликонденсации нуклеозидтрифосфата. При включении в цепь каждого нуклеозида отщепляется одна молекула дифосфата - пирофосфорная кислота.

Нуклеиновые кислоты подобно белковым цепям являются линейными неразветвленными цепями. Первичная структура нуклеиновой кислоты определяется последовательностью азотистых оснований. Первичная структура ДНК была расшифрована в 1962 году, и сегодня существует правило синтеза полинуклеотидных цепей. Одно из нескольких экспериментальных правил, справедливых для ДНК, - правило Чаргаффа (с точностью 3 - 5%):

ДНК содержится в основном в хромосомах клетки и ее молекулярный вес достигает миллиардов (самые длинные биополимеры). РНК содержится в цитоплазме ядер клеток, в растительных вирусах и фагах.

Принято различать четыре типа РНК:

Рибосомальная РНК (молекулярный вес - 2*106);

Матричная РНК (3*104 - 7*104) {так как средний вес рибонуклеотида равен 224, то самые короткие цепи матричной РНК содержат более 150 нуклеотидов;

Транспортная РНК (2*104) (около 80 нуклеотидов);

Вирусная РНК.

Функции 1. поддержание существования живых организмов 2. хранение и передача наследственной информции 3. непосредственное участие в передаче наследсвенной инфо (ДНК?мРНК?белок) 4. Составные компоненты НК выполняют ряд функций:

а) участие в качестве коферментов и аллостерических эффекторов б) участие в аккумулировании Е.

Формы НК: 1. линейные 2. развёрнутые 3. кольцевые.

Разветвлённые - У-ветви, D-петли.

Кольцевые: 1-цеп, 2-цеп, замкнутые, катенены.

Роль Чаргаффа: 1. А+Ц=Т+.Г 2. (А+Г)/(Ц+Т)=1 Молярная доля пуринов = молярной доле пиримидинов. 3. А=Т. Г=Ц 4. Существующее условие - коэффициент специфичности - отношение Г+Ц / А+Т. % ГЦ больше, тем больше плотная молекула ДНК