Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
1-90 биофизика.doc
Скачиваний:
191
Добавлен:
14.04.2019
Размер:
1.28 Mб
Скачать
  1. Основные направления развития современной биофизики. Уровни биофизических исследований.

Биофизика – это н., изуч физ и физико-хим. пр-сы, протекающие в биосис. на разных уровнях орг-ции и явл-ся основой физиолог-их актов.

Разделы биофизики: (и уровни такие же… наверно))))

  1. Молекулярная – изуч. строение и физ-хим св-ва, биофизику молекул, биополимеров и надмол-ных систем.

  2. БФ клетки – изуч. особенности строения и функц-ния кл-ных и тканевых систем. БФ мембранных процессов – св-ва био мембран и их частей; БФ фотобиол. процессов - воздействия внешних источников света на живые системы; радиационная БФ: влияния ионизирующего излучения на организм.

  3. БФ сложных систем – изуч. кинетику биопроц., поведение во времени разнообразных проц-ов присущих живой материи и ТД биосистем - преобразования Е в живых структурах.

Современная БФ стремительно развивается, ее достижения способствуют переходу биологии на качественно более высокий молекулярный уровень исследования.

Не знаю, что сюда ещё, из Википедии, можно как направления: математическая БФ. Прикладная БФ: биоинформатика (хотя не является собственным разделом БФ, но очень тесно связана с ней); биометрия; биомеханика (функции и структура опорно-двигального аппарата и физ. движения биосистем); БФ эволюционных процессов; медицинская БФ; экологическая БФ.

Био объекты очень сложны и на протекающие в них процессы влияют многие факторы, кот. зависят друг от друга. Физика позволяет создать упрощенные модели объекта, кот. описываются законами ТД, электродинамики, квантовой и классической механики. С пом. корреляции физ. данных с биол-ми можно получить более глубокое понимание процессов в био объекте. Для получения инфо в био системах применяют различные оптические методы, рентгено-структурный анализ с использованием синхротронного излучения, ЯМР- и ЭПР-спектроскопию, 7-резонансную спектроскопию, различные электрометрические методы, микроэлектродную технику, методы хемилюминесценции, лазерную спектроскопию, метод меченых атомов и др. Это исп. для медицинской диагностики и терапии.

  1. Термодинамика, как ядро современной биофизики. Предмет и задачи. Практическое значение ТД в БФ исследованиях.

ТД – это н. о превращения Е. ТД - это н., изуч. наиболее общие закономерности превращения различных видов Е в системе.

Предмет ТД: Е; возникновение Е в живых сист.; взаимодейств. жив. сист. с окруж. средой. Подходы: феноменологический и детальный. Значение имеют ТД параметры только в исходном и конечном состоянии.

Методы: статистический (но не даёт представление о процессе).

Направления: 1) изуч. и расчёт Е в состоянии покоя и при совершении работы. Изуч-ся и опр-ся КПД разл биол процессов. 2) изуч. динамических процессов в живых сист. (транспорт в-ва).

Значение: Позволяет оценить энергетические изменения, происх. в результате биохим. р-ций; рассчитать Е разрыва конкретных хим связей; рассчитать осмот. давление по обе стороны полупрониц. мембраны; рассчитать влияние концентрации соли в р-ре на растворимость макром-л. Применяется для описания процессов, происх. в электрохим. ячейках. Привлекается для обоснования теории возникновения и эволюции жизни на Земле.

Предмет: изучение изменения баланса в системе живой организм - окружающая среда.

Выделяют 2 осн. направления использования термодинамики:

а) расчёт Е превращения в живом орг-ме и в отд системах орг и в состоянии покоя и при совершении работы. Определение КПД разл биол процессов.

б) Исследование живых организмов как отрытых т\д систем.

Термодинамика биологических процессов

1. Подходы: феноменологический и детальный. Значение имеют т/д параметры только в исходном и конечном состоянии. Термодинамика – это наука, изущающая наиболее общие закономерности превращения различных видов энергии в системе.

2. Практическая значимость т/д в биологии. Позволяет оценить энергетические изменения, происходящие в результате биохимических реакций; рассчитать энергию разрыва конкретных хим связей; рассчитать осмотическое давление по обе стороны полупроницаемой мембраны; рассчитать влияние концентрации соли в растворе на растворимость макромолекул. Применяется для описания процессов, протекающих в электрохимических ячейках. Привлекается для обоснования теории возникновения и эволюции жизни на Земле