Добавил:
СПбГУТ * ИКСС * Программная инженерия Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Рабкин Е. Л., Ведина О. И. Линейная алгебра для экономистов. Часть 1.pdf
Скачиваний:
41
Добавлен:
17.06.2020
Размер:
1.33 Mб
Скачать

лежат на окружности радиуса nr с центром в начале координат (причем

делят ее на равные части. Поэтому иногда уравнение zn 1 0 называют «уравнением деления круга»).

Пример. Найти все корни уравнения z4 4 0 . Решение. По формуле (1.3)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2k

 

 

 

 

 

 

 

 

 

 

 

2k

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

z 4 4 4 4 cos i sin 4

4

 

 

i sin

,

 

k 0,1, 2, 3.

cos

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

 

 

, то при k 0 получаем:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Так как 4 4

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

z1

 

 

 

i sin

 

 

 

 

 

 

 

2

 

i

 

 

2

1 i.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2 cos

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Аналогично при k 1 получаем:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

z2

 

2 cos

 

 

i sin

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

i

 

 

 

 

 

 

 

 

 

 

1 i ;

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5

 

 

 

 

 

5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

при k 2 получаем:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

z3

2

 

cos

 

 

 

 

 

 

i sin

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

i

 

 

 

 

 

 

 

 

1 i ;

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7

 

 

 

 

 

 

7

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

при k 3 получаем:

z4

 

 

 

i sin

 

 

 

 

 

 

2

 

i

 

2

 

1 i.

 

 

 

 

 

 

 

 

 

2

 

cos

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

2

 

 

 

 

 

Видим, что все 4 найденных корня находятся в вершинах квадрата с центром в начале координат.

1.4. Комплексные числа в показательной форме

Предварительное замечание. До сих пор мы производили с комплексными числами только алгебраические операции: сложение, вычитание, умножение, деление, возведение в целую степень и извлечение корня натуральной степени. Оказывается, можно разумно определить и возведение чисел в мнимую (а значит, и в комплексную) степень. Разумно – значит так, чтобы сохранялись все привычные свойства показательной функции.

Определение. По определению полагаем, что

ei cos i sin .

(1.5)

Формула (1.5) называется формулой Эйлера.

Два основных свойства показательной функции от мнимого аргумента:

1) ei 1 при любом (действительно, по формуле (1.1)

| ei cos isin | cos2 sin2 1 1;

12

2) функция (1.5) периодична с периодом 2 : ei 2 ei (очевидно из формулы (1.5).

Утверждение. Все привычные правила действий с показательной функцией при вещественных показателях справедливы и при мнимых показателях, а именно, справедливы следующие равенства:

1) ei 1 ei 2 ei( 1 2 ) ;

2) ei 1 : ei 2 ei( 1 2 ) ;

 

 

 

 

 

 

 

 

 

 

i

2k

 

 

 

 

i

 

n

 

i n

 

 

n

i

 

 

 

3)

)

e

;

4)

e

n

, k 0, n 1.

(e

 

 

 

e

 

Все эти формулы доказываются при помощи формулы (1.5) и правил действий с комплексными числами в тригонометрической форме.

Докажем, например, первую из этих формул.

ei 1 ei 2 cos 1 i sin 1 cos 2 i sin 2cos 1 2 i sin 1 2 ei 1 2 .

Следствия из формулы (1.5).

1.Тригонометрические функции можно выразить через показательные

смнимым аргументом по формулам

cos

ei e i

,

sin

ei

e i

,

 

 

 

2i

 

 

 

2

 

 

 

 

 

 

tg

sin

 

ei e i

 

e2i 1

и т. д.

cos

i ei e i

i e2i 1

Действительно, подставляя в (1.5) «φ» вместо «φ», получим:

 

e i cos i sin .

(1.6)

Складывая и вычитая формулы (1.5) и (1.6), получим доказываемые формулы.

2. Подставляя в тригонометрическую форму комплексного числа (1.2) формулу (1.5), убеждаемся, что любое комплексное число можно записать в виде

z rei .

(1.7)

Определение. Запись комплексного числа в форме (1.7) называется по-

казательной формой записи комплексного числа. Замечания.

1. Для записи комплексного числа в показательной форме нужно вычислить его модуль и аргумент по формулам (1.1).

2. Алгебраические действия с комплексными числами удобнее всего производить в показательной форме, но результат должен быть записан в алгебраической форме.

13

3. Показательная форма комплексного числа позволяет вводить и вычислять логарифмы комплексных чисел, тригонометрические и обратные тригонометрические функции от комплексного аргумента и т. д. Эти функции изучает специальная дисциплина – теория функций комплексного переменного. Мы эти функции изучать не будем.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

3

 

 

8i

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

cos

 

 

 

i sin

 

 

 

 

e

 

 

5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Пример. Вычислить w=

 

 

 

 

 

5

 

 

 

 

 

 

 

 

 

 

5

 

 

 

 

 

 

 

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

i 3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

3 i

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Решение. Перепишем все множители в показательной форме. Получим

 

 

 

 

 

 

3i

 

 

 

8i

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2k

 

 

 

 

 

 

2 2k

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2e i

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2e 5 e

 

5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

i

 

 

1

 

 

 

i

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

6

3

 

 

 

 

3

w

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

e

 

 

 

 

 

 

 

 

 

 

 

 

 

 

e

 

 

 

,

 

 

 

 

i

3

 

 

 

 

 

 

 

 

 

 

 

 

 

i

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

i

 

 

 

2k

i

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2e

6

 

 

e 2

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8e

 

 

2 e 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

где k 0,1, 2. Отсюда следует, что:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

при k 0:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2 i

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

1

 

 

2

 

 

 

 

 

 

 

 

2

 

 

 

1

 

 

 

1

 

 

 

 

 

 

 

 

3

 

 

 

1 i 3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

w1

 

 

 

 

e

3

 

 

 

 

 

 

 

 

 

cos

 

 

 

 

 

 

 

i sin

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

i

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

;

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

3

 

 

 

4

 

 

 

 

2

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

8

 

 

 

 

 

 

при k 1:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4 i

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

1

 

 

 

4

 

 

 

 

4

 

 

 

 

1

 

 

1

 

 

 

 

 

 

 

3

 

 

1 i 3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

w2

 

 

 

 

e

3

 

 

 

 

 

 

 

 

cos

 

 

 

 

 

 

 

i sin

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

i

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

;

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

3

 

 

 

 

3

 

 

 

 

4

 

 

 

2

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

8

 

 

 

 

 

 

при k 2 :

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

w3

 

1

e 2 i

1

cos 2 i sin

2

 

1

 

1 i 0

 

 

1

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

4

 

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Вопросы для самопроверки

1.Что называется комплексным числом, его вещественной и мнимой частью?

2.Какие два комплексных числа называются равными?

3.Какое число называется сопряженным данному комплексному числу?

4.Какие числа равны своим сопряженным?

5.Что такое модуль и аргумент комплексного числа? Как они вычисляются?

6.Каков геометрический смысл умножения и деления комплексных

чисел?

7.Как извлечь корень натуральной степени из комплексного числа?

8.Как располагаются корни натуральной степени из данного комплексного числа на комплексной плоскости?

9.Как выражаются тригонометрические функции через показательную и почему?

14