Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Конспекты лекции2012-2013.doc.doc
Скачиваний:
262
Добавлен:
07.02.2015
Размер:
1.45 Mб
Скачать

3. Многоатомные спирты.

Атомность спиртов определяется количеством гидроксильных групп. Двухатомные спирты содержат две гидроксильные группы и носят общее название диолы или гликоли. Трехатомные спирты называют триолами или глицеринами. Простейшие и наиболее важные представители диолов и триолов – этиленгликоль и глицерин.

Этиленгликоль (этандиол-1,2).

Химические свойства этиленгликоля аналогичны свойствам одноатомных спиртов. Однако есть ряд специфических свойств, обусловленных присутствием двух гидроксильных групп.

Этиленгликоль является более сильной кислотой, чем одноатомные спирты (рКа=15,1) и образует в водных растворах комплексные алкоголяты с ионами тяжелых металлов, например с Cu2+.

Появляющееся при этом ярко-синее окрашивание позволяет использовать реакцию как качественную на диольный фрагмент.

При дегидратации этиленгликоля в зависимости от условий реакции образуются разные продукты. При нагревании в присутствии серной кислоты происходит межмолекулярная дегидратация с образованием циклического простого эфира – диоксана. Нагревание с хлоридом цинка дает продукт внутримолекулярной дегидратации – ацетальдегид.

Этиленгликоль легко окисляется. В зависимости от природы окислителя могут образоваться гликолевый альдегид, глиоксаль, глиоксиловая кислота, щавелевая кислота.

Этиленгликоль используется для приготовления антифризов; для получения растворителей (простые эфиры этиленгликоля, диоксан) и полимеров (полиэфиров).

Глицерин (1,2,3- пропантриол).

Глицерин получают гидролизом жиров (см. лек. №18), но в основном синтетическим путем из пропилена.

Глицерин дает все реакции, известные для спиртов. Наличие трех гидроксильных групп обусловливает некоторые специфические свойства.

Глицерин является более сильной кислотой, чем одноатомные спирты (рКа=14) и, подобно этиленгликолю, образует хелатные комплексы с ионами металлов.

При дегидратации глицерина образуется ненасыщенный альдегид акролеин.

Мягкое окисление глицерина дает смесь глицеринового альдегида и дигидроксиацетона.

Важное значение имеют сложные эфиры глицерина. При действии на глицерин азотной кислоты в присутствии серной кислоты образуется тринитрат глицерина (нитроглицерин).

Нитроглицерин используется в производстве взрывчатых веществ. В малых концентрациях нитроглицерин применяется как сосудорасширяющее средство.

При действии на глицерин фосфорной кислоты образуется смесь глицерофосфатов.

Глицерофосфаты являются структурными компонентами фосфолипидов.

Сложные эфиры глицерина и высших жирных кислот – основная составная часть природных жиров и масел.

Примерами многоатомных спиртов, содержащих четыре, пять и шесть гидроксильных групп, могут служить соответственно эритриты, пентиты и гекситы .

4. Фенолы. Методы получения.

1. Сплавление солей сульфоновых кислот со щелочами. 2. Щелочной гидролиз хлорбензола. 3. Замещение диазогруппы на гидроксил . 4. Кумольный метод.

 

5. Фенолы. Химические свойства.

Кислотные свойства

Фенолы являются более сильными кислотами, чем спирты, что обусловлено стабилизацией фенолят-аниона за счет делокализации отрицательного заряда по ароматическому кольцу. Фенолы являются более сильными кислотами, чем вода, поэтому феноляты, в отличие от алкоголятов, могут быть получены из фенолов действием водных растворов щелочей. Карбоновые кислоты и большинство неорганических кислот, например, угольная, превосходят по кислотности фенол, что используется для выделения фенола из щелочных растворов. C6H5O- Na+ + CO2 + H2O → C6H5OH + NaHCO3 Электроноакцепторные заместители в ароматическом кольце увеличивают, а электронодонорные – уменьшают кислотность фенолов. Так, 2,4,6-тринитрофенол (пикриновая кислота) по кислотности (рКа= 0,4) сравним с карбоновыми кислотами.

Нуклеофильные свойства фенолов

Фенолы являются более слабыми нуклеофилами, чем спирты, что связано со значительным снижением электронной плотности на атоме кислорода вследствие сопряжения ОН группы с ароматическим кольцом.

Для увеличения нуклеофильности фенолы переводят в феноляты, которые легко алкилируются и ацилируются с образованием соответственно простых и сложных эфиров. ArO-Na+ + RBr → ArOR + NaBr ArO-Na+ + RCOCl→ RCOOAr + NaCl

Реакции электрофильного замещения в ароматическом кольце фенолов

Гидроксильная группа относится к числу групп, активирующих электрофильное замещение в ароматическом кольце и направляющих заместитель в орто- и пара- положения. Активирующее влияние гидроксильной группы настолько сильно, что в отдельных случаях реакцию трудно остановить на стадии введения только одного заместителя. Фенолы вступают практически во все типичные реакции электрофильного замещения как с сильными, так и со слабыми электрофильными агентами.

Фенол легко бромируется бромной водой с образованием трибромфенола. Нитрование фенолов разбавленной 20-25%-ной азотной кислотой приводит к получению смеси орто- и пара-нитрофенолов. Сульфирование фенола серной кислотой дает смесь орто- и пара-изомеров гидроксибензолсульфоксилоты. При 20оС в реакционной смеси содержится 49% орто-изомера и 51% пара-изомера, тогда как при 120оС доля пара-изомера возрастает до 96%. Феноляты в реакциях электрофильного замещения еще более реакционноспособны, чем фенолы (влияние +I- и +M-эффектов группы О-). Они взаимодействуют даже с таким слабым электрофилом, как СО2. При нагревании сухого фенолята натрия с СО2 при 150-180оС и давлении 5 атм, образуется натриевая соль салициловой кислоты.

 Окисление фенолов. Хиноны

Фенолы легко окисляются. При окислении пространственно затрудненных фенолов образуются устойчивые феноксильные радикалы. Повышенная устойчивость феноксильных радикалов связана с возможностью делокализации неспаренного электрона по ароматическому кольцу. Кроме того, наличие объемистых заместителей в орто-положении препятствует рекомбинации двух таких радикалов. Стабильность феноксильных радикалов обуславливает антиокислительные свойства пространственно затрудненных фенолов. Они выполняют роль ловушек свободных радикалов в процессах пероксидного окисления. Активный свободный радикал, ведущий цепь окисления, быстро взаимодействует с таким фенолом, давая устойчивый феноксильный радикал, что приводит к обрыву цепи. Повышенную склонность к окислению проявляют многоатомные фенолы. Окисление фенолов с пара- и орто-расположением гидроксильных групп приводит соответственно к п- и о-хинонам.

Хиноны широко распространены в природе и играют роль антибиотиков, пигментов, витаминов, коферментов.

Двухатомные фенолы – гидрохинон, резорцин, пирокатехин широко распространены в природе. Пирокатехин является структурным элементом многих биологически активных веществ, например, катехоламинов. Монометиловый эфир пирокатехина, гваякол, используется как лекарственное средство для лечения заболеваний верхних дыхательных путей.

Резорцин применяется как антисептическое средство при лечении кожных заболеваний.

Гидрохинон является структурным элементом природных соединений, например, витаминов группы Е. Восстановительная способность гидрохинонового фрагмента используется в окислительно-восстановительных процессах, сопровождающих дыхание. Самим гидрохинон служит исходным веществом в синтезе многих лекарственных средств.