Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Конспекты лекции2012-2013.doc.doc
Скачиваний:
262
Добавлен:
07.02.2015
Размер:
1.45 Mб
Скачать

2.3. Реакции по α -углеродному атому

Карбоновые кислоты, содержащие α -водородные атомы, взаимодействуют с бромом в присутствии фосфора с образованием α -бромпроизводных (реакция Гелля – Форгальда - Зелинского):

Галоген в α -галогензамещенных кислотах легко замещается под действием нуклеофильных реагентов. Поэтому α -галогензамещенные кислоты являются исходными веществами в синтезе широкого круга замещенных по α -положению кислот, в том числе α -амино- и α -гидроксикислот:

   

2.4. Декарбоксилирование

Декарбоксилирование – это удаление CO2 из карбоновых кислот или их солей. Декарбоксилирование проводят путем нагревания в присутствии кислот или оснований. При этом, как правило, происходит замещение карбоксильной группы на атом водорода.

Незамещенные монокарбоновые кислоты декарбоксилируются в жестких условиях:

Декарбоксилирование облегчается при наличии электроноакцепторных заместителей в α –положении:

Важное значение имеет ферментативное декарбоксилирование кето-, амино- и гидроксикислот в.

Декарбоксилирование путем нагревания (сухой перегонки) кальциевых и бариевых солей карбоновых кислот – метод получения кетонов:

2.5. Восстановление.

Карбоновые кислоты, хлорангидриды, ангидриды и сложные эфиры восстанавливаются LiAlH4 до первичных спиртов.

Хлорангидриды могут быть восстановлены до альдегидов.

   

3. Дикарбоновые кислоты

Дикарбоновые кислоты содержат две карбоксильные группы. Наиболее доступными являются кислоты линейного строения, содержащие от 2 до 6 атомов углерода. Их строение и методы получения представлены в таблице 9.

Химические свойства дикарбоновых кислот в основном аналогичны свойствам монокарбоновых кислот. Они дают все реакции, характерные для карбоксильной группы. При этом могут быть получены функциональные производные (хлорангидриды, ангидриды, сложные, эфиры, амиды) как по одной, так и по обеим карбоксильным группам. Дикарбоновые кислоты имеют большую кислотность, чем монокарбоновые, вследствие –I-эффекта карбоксильной группы. По мере увеличения расстояния между карбоксильными группами кислотность дикарбоновых кислот уменьшается.

Дикарбоновые кислоты имеют ряд специфических свойств, которые определяются наличием в молекуле двух карбоксильных групп.

Отношение дикарбоновых кислот к нагреванию.

Превращения дикарбоновых кислот при нагревании зависят от длины цепи, разделяющей карбоксильные группы, и определяются возможностью образования термодинамически стабильных пяти- и шестичленных циклов.

При нагревании щавелевой и малоновой кислот происходит декарбоксилирование:

Янтарная, глутаровая и малеиновая кислоты при нагревании легко отщепляют воду с образованием пяти- и шестичленных циклических ангидридов:

Адипиновая кислота при нагревании декарбоксилируется с образованием циклического кетона – циклопентанона.

Реакции поликонденсации

Дикарбоновые кислоты взаимодействуют с диаминами и диолами с образованием соответственно полиамидов и полиэфиров, которые используются в производстве синтетических волокон.

   

Биологически важные дикарбоновые кислоты.

Щавелевая кислота образует труднорастворимые соли, например, оксалат кальция, которые отлагаются в виде камней в почках и мочевом пузыре.

Янтарная кислота участвует в обменных процессах, протекающих в организме. Является промежуточным соединением в цикле трикарбоновых кислот.

Фумаровая кислота, в отличие от малеиновой, широко распространена в природе, участвует в процессе обмена веществ, в частности в цикле трикарбоновых кислот.

Лекция № 14