Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ХИМИЯ пособие для ЗВФ.docx
Скачиваний:
192
Добавлен:
28.03.2015
Размер:
1.88 Mб
Скачать

Постулат планка (третий закон термодинамики)

Из всего вышесказанного следует, что реально определить можно только относительное изменение энтропии, а не ее абсолютное значение. В этом смысле энтропия ничем не отличается от других термодинамических функций - внутренней энергии и энтальпии. На самом деле это не совсем так. Известно, что наименьшей энтропией обладают твердые тела при низкой температуре.

В 1911 году Макс Планк высказал постулат:

«Энтропия правильно сформированного кристалла чистого вещества при абсолютном нуле температур равна нулю».

Следует подчеркнуть, что вещество должно быть абсолютно чистым, а кристалл не должен иметь дефектов, так как все это увеличивает число микросостояний вещества и, значит, энтропию.

53

Из экспериментальных данных известно, что при температурах близких к абсолютному нулю вещества как бы теряют связь с миром тепловых явлений, т.е. такие их свойства, как теплоемкость, объем, энтропия перестают зависеть от температуры.

Наиболее убедительное объяснение постулата Планка достигается в рамках статистической термодинамики, согласно которой энтропия является мерой беспорядка в веществе. С этой точки зрения идеальный кристалл при абсолютном нуле Кельвина, когда все тепловые флуктуации в веществе прекращаются, является примером предельной упорядоченности системы, а, значит, число микросостояний обращается в единицу (W=1, ln 1 = 0) и энтропия тоже равна нулю.

Если принять постулат Планка за действительность, то окажется, что при равновесном переходе от кристаллического состояния при абсолютном нуле в стандартное состояние мы получаем не относительное увеличение энтропии, а ее абсолютное значение в стандартном состоянии. Таким образом, в термодинамических таблицах приводятся значения стандартной энтропии, а не ее изменения. Эти значения определены либо на основе калориметрических измерений и дальнейшего расчета, либо методами статистической термодинамики.

Изменение энтропии в химической реакции может быть рассчитано при любых температурах как разность между суммой стандартных энтропий образования продуктов реакции и суммой стандартных энтропий образования реагентов:

S0х.р = ∑ S0298 (прод) - ∑ S0298 (реаг). (5.10)

Это возможно потому, что изменение энтропии в химической реакции так же, как и изменение энтальпии, очень слабо зависит от температуры.

КРИТЕРИИ САМОПРОИЗВОЛЬНОГО ПРОТЕКАНИЯ ХИМИЧЕСКИХ РЕАКЦИЙ

Исторически первая попытка сформулировать критерии самопроизвольности процессов была предпринята Бертло.

  1. ПРИНЦИП БЕРТЛО. «Самопроизвольно могут протекать только те процессы, в результате которых энергия системы понижается».

Для химических реакций это означало, что самопроизвольно могут идти только экзотермические реакции, так как в них ΔH0хр< 0. Это не соответствует опыту, так как существует множество самопроизвольных эндотермических процессов, в которых ΔH0хр > 0.

  1. ПРИНЦИП ВОЗРАСТАНИЯ ЭНТРОПИИ В ИЗОЛИРОВАННЫХ СИСТЕМАХ. «В изолированных системах энтропия может либо оставаться постоянной, либо возрастать». ΔS 0.

Большинство реальных химических процессов протекает либо в открытых сосудах при постоянном давлении, либо в закрытых, при постоянном объеме. В обоих случаях система является закрытой, а не изолированной и принцип возрастания энтропии срабатывает не всегда.

54

Например, процесс окисления активных металлов кислородом воздуха (атмосферная коррозия) протекает самопроизвольно с уменьшением энтропии в системе (тв.+ газ = тв. S < 0).

  1. ПРИНЦИП УБЫЛИ СВОБОДНОЙ ЭНЕРГИИ. «Самопроизвольно могут протекать химические реакции, в результате которых свободная энергия системы убывает».

Проведем объединение аналитических выражений первого и второго законов термодинамики для изобарно - изотермического процесса в условиях состояния термодинамического равновесия.

Из первого закона следует, что подводимая к системе теплота расходуется на увеличение внутренней энергии системы и на совершение внешней работы

Q =U + pV , при Р,Т = const Q = H. В то же время из второго закона следует, что Q =TS, объединив выражения первого и второго законов получим, что в условиях равновесия TS = H или H - TS = 0. Эта функция получила название изобарно-изотермический потенциал или свободная энергия Гиббса G = H - TS

Из вышесказанного следует, что в изобарно-изотермических условиях состояние равновесия характеризуется выражением G = 0, когда энергия Гиббса достигла своего минимума. Также можно показать, что условием самопроизвольности процесса служит неравенство G < 0, а для не самопроизвольных процессов G > 0.

Знак и величина свободной энергии определяются соотношением двух факторов – энтальпийного (H) и энтропийного (TS). Энтальпийный фактор отражает стремление системы перейти в состояние с наименьшей внутренней энергией, что достигается процессами укрупнения частиц (их агрегация). Энтропийный фактор учитывает стремление системы к достижению состояния с

максимальным значением энтропии (беспорядка), т.е. к разукрупнению частиц (их дезагрегация). Действие этих факторов разнонаправлено и момент их уравновешивания (TS = H) соответствует состоянию равновесия системы.

В зависимости от соотношения энтальпийного и энтропийного факторов можно определить необратимые и обратимые химические реакции.

1. Необратимые реакции.

1.1 H< 0

S> 0 G < 0 при любых температурах. Реакция самопроизвольно может протекать в прямом направлении (термодинамически разрешена)

1.2. H> 0

S< 0 G > 0 при любых температурах. Реакция самопроизвольно не может протекать в прямом направлении ( термодинамически запрещена).

2. Обратимые реакции.

2.1. H < 0

S < 0 G < 0, если |H| > |TS|. Реакция разрешена в прямом направлении только лишь за счет энтальпийного фактора ( знак G определяется энтальпийным фактором).

55

2.2. H > 0

S > 0 G < 0, если |H| < |TS|. Реакция разрешена в прямом направлении только лишь за счет энтропийного фактора ( знак G определяется энтропийным фактором).

Для обратимых реакций соотношение энтальпийного и энтропийного факторов можно менять, изменяя температуру. Следовательно, в случаях 2.1 и 2.2 всегда имеется температура, при которой TS = H и реакция меняет направление своего самопроизвольного протекания. Назовем эту температуру температурой инверсии (Тинв.).

Тинв = Hхр /Sхр. (5.11)

Следует отметить, что состояние равновесия (G = 0) является идеальным состоянием, достижение которого требует бесконечно много времени. Считается, что реальные процессы начинают протекать с заметной скоростью в том или ином направлении, когда изменение свободной энергии превышает 40 кДж/моль.

В стандартных условиях расчет изменения свободной энергии в химической реакции (G0хр) можно определить как разность между суммой стандартных свободных энергий Гиббса продуктов реакции и суммой стандартных свободных энергий Гиббса исходных веществ с учетом знаков и коэффициентов.

ΔG0хр = ∑∆G0298(продуктов) - ∑∆G0298(реагентов). (5.12)

Если температура реакции отлична от стандартной, то рассчитывать изменение свободной энергии в химической реакции следует по уравнению (для заданной температуры)

ΔG0хр= ΔH0хр - ТS0х.р . (5.13)