Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
OTVYeT_PO_FIZIKYe.doc
Скачиваний:
317
Добавлен:
29.03.2015
Размер:
862.72 Кб
Скачать

34. Второй закон термодинамики. Энтропия. Тепловые двигатели и холодильные машины. Цикл Карно.

Второе начало термодинамикиможно сформулировать как закон возрастания энтропии замкнутой системы при необратимых процессах: любой необратимый процесс в замкну той системе происходит так, что энтропия системы при этом возрастает.

Можно дать более краткую формулировку второго начала термодинамики: в процессах, происходящих в замкнутой системе, энтропия не убывает. Здесь существенно, что речь идет о замкнутых системах, так как в незамкнутых системах энтропия может вести себя любым образом (убывать, возрастать, оставаться постоянной).

Кроме того, отметим еще раз, что энтропия остается постоянной в замкнутой системе только при обратимых процессах. При необратимых процессах в замкнутой системе энтропия всегда воз растает.

Формула Больцмана S = klnW, где k — постоянная Больцмана, позволяет объяснить постулируемое вторым началом термодинамики возрастание энтропии в замкнутой системе при необратимых процессах: возрастание энтропии означает переход системы из менее вероятных в более вероятные состояния. Таким образом, формула Больцмана позволяет дать статистическое толкование второго начала термодинамики. Оно, являясь статистическим законом, описывает закономерности хаотического движения большого числа частиц, составляющих замкнутую систему.

Понятие энтропии введено в 1865г. Р. Клаузиусом. Для выяснения физического содержания этого понятия рассматривают отношение теплоты Q, полученной телом в изотермическом процессе, к температуре Т теплоотдающего тела, называемое приведенным количеством теплоты. Приведенное количество теплоты, сообщаемое телу на бесконечно малом участке процесса, равно Q/T. Строгий теоретический анализ показывает, что приведенное количество теплоты, сообщаемое телу в любом обратимом круговом процессе, равно нулю: (80)____________.

Из равенства нулю интеграла (57.1), взятого по замкнутому контуру, следует, что подынтегральное выражение Q/T есть полный дифференциал некоторой функции, которая определяется только состоянием системы и не зависит от пути, каким система пришла в это состояние. Таким образом, (81)__________________.

Функция состояния, дифференциалом ко торой является Q/T, называется энтропией и обозначается S.

Из формулы следует, что для обратимых процессов изменение энтропииS=0.

В термодинамике доказывается, что энтропия системы, совершающей необратимый цикл, возрастает:

35.Реальные газы. Уравнение Ван-дер-Ваальса. Изотермы реальных газов. Фазовые превращения

Реальный газ— газ, который не описывается уравнением состояния идеального газа Клапейрона — Менделеева.

Зависимости между его параметрами показывают, что молекулы в реальном газе взаимодействуют между собой и занимают определенный объём. Состояние реального газа часто на практике описывается обобщённым уравнением Менделеева — Клапейрона:

где p — давление; V - объем T — температура; Zr = Zr (p,T) — коэффициент сжимаемости газа; m - масса; М — молярная масса; R — газовая постоянная.

Для одного моля газа Ван-дер-Ваальсаоно имеет вид:

p — давление,

V — молярный объём,

T — абсолютная температура,

R — универсальная газовая постоянная.

Для ν молей газа Ван-дер-Ваальса уравнение состояния выглядит так:

Где V — объём,

Изотермы реальных газов

Фазовые превращения

Каждое вещество в зависимости от внешних условий - температуры и давления - может находиться в твердом, жидком и газообразном состоянии. При подводе или отводе теплоты меняется форма связи между молекулами, вызывая тем самым изменение вещества, т. е. происходит фазовое превращение. Для получения холода используют фазовые превращения, протекающие при низких температурах с поглощением теплоты из охлаждаемой среды. К ним относятся плавление, кипение и сублимация.

Плавление.Процесс перехода вещества из кристаллического состояния в жидкое с поглощением теплоты называют плавлением (например, при нагревании водного льда его температура повышается до температуры 0 оС, дальнейшее нагревание ведет к его плавлению). Температура плавления зависит от вида тела и внешних условий (давления). Для каждого тела существует своя постоянная температура плавления, и, как уже отмечалось выше, для водного льда при атмосферном давлении она составляет 0 оС. Этот способ искусственного охлаждения широко применяют на практике, в частности при охлаждении продуктов в бытовых холодильниках, на хладотранспорте и т. д.

Процесс перехода жидкости в твердое состояние при постоянной температуре плавления называют отвердеванием. Данный процесс осуществляется при отводе теплоты от жидкости, когда температура жидкости снижается начала отвердевания, равной температуре плавления. Более низкие температуры плавления получают при охлаждении льда солеными смесями, например смесью хлорида натрия со льдом. Это позволяет получить температуру -21,2 оС (при массовой доле соли 23,1%).

Наиболее низкая температура для данных компонентов смеси (например, соль + вода) называется эвтектической или криогидратной. При данной постоянной температуре происходит кристаллизация смеси.

Эвтектические растворы применяют для охлаждения продуктов на автомобильном транспорте и т. д. Емкости с эвтектическими растворами называют зероторами или эвтектическими аккумуляторами.

Испарение.Процесс парообразования, происходящий со свободной поверхности жидкости при различных температурах, называют испарением. Данный процесс используют при испарении воды в водоохлаждающих устройствах (градирни, брызгательные бассейны или испарительные конденсаторы). При атмосферном давлении и температуре 0 оС скрытая теплота r испарения воды составляет 2509 кДж/кг.

Кипение.Процесс интенсивного парообразования, происходящий по всему объему жидкости в результате поглощения теплоты окружающей среды, называют кипением. При постоянном давлении температура кипения для данного вещества постоянна и зависит от давления паров над жидкостью. Уменьшение давления приводит к снижению температуры жидкости вплоть до ее замерзания. Процесс кипения жидкости при низкой температуре - один из основных в парокомпрессионных холодильных машинах, где кипит хладагент. Аппарат, в котором происходит кипение, называют испарителем. В испарителе осуществляется отвод теплоты от окружающей среды, а кипящая жидкость переходит в парообразное состояние.

Количество теплоты, необходимое для превращения 1 кг жидкости, взятой при температуре кипения, в пар, называют скрытой теплотой парообразования r или удельной теплотой парообразования. С повышением давления кипения жидкости скрытая теплота парообразования уменьшается.

Сублимация.Процесс перехода тела из твердого состояния в парообразное, минуя промежуточное жидкое состояние, называют сублимацией. В качестве рабочего тела для охлаждения объектов наиболее широко применяют твердый диоксид углерода СО2 (сухой лед). Температура сублимации СО2 при атмосферном давлении равна -78,9 оС, теплота сублимации -574 кДж/кг.

Конденсация.Процесс превращения насыщенного пара в жидкость, сопровождающийся отводом выделяемой теплоты, называют конденсацией. Температура конденсации зависит от давления. Конденсация жидкости из насыщенного пара - один из основных рабочих процессов в холодильных машинах - осуществляется в аппаратах, называемых конденсаторами.

36.Электрический заряд и его свойства. Закон сохранения электрического заряда. Закон Кулона. Диэлектрическая проницаемость и ее физический смысл.

Электри́ческий заря́д— это связанное с телом свойство, позволяющее ему быть источником электрического поля и участвовать в электромагнитных взаимодействиях. Заряд является количественной характеристикой. Единица измерения заряда в СИ — кулон — электрический заряд, проходящий через поперечное сечение проводника при силе тока 1А за время 1с. Впервые электрический заряд был введён в законе Кулона в 1785 году. Заряд в один кулон очень велик.

Закон сохранения электрического заряда- физический закон, в соответствии с которым в замкнутой системе взаимодействующих тел алгебраическая сумма электрических зарядов (полный электрический заряд) остается неизменной при всех взаимодействиях.

Закон сохранения электрического заряда гласит, что алгебраическая сумма зарядов электрически замкнутой системы сохраняется.

Зако́н Куло́на— это закон о взаимодействии точечных электрических зарядов.

Был открыт Шарлем Кулоном в 1785 г. Проведя большое количество опытов с металлическими шариками, Шарль Кулон дал такую формулировку закона:

Сила взаимодействия двух точечных неподвижных заряженных тел в вакууме направлена вдоль прямой, соединяющей заряды, прямо пропорциональна произведению модулей зарядов и обратно пропорциональна квадрату расстояния между ними.[1]

Важно отметить, что для того, чтобы закон был верен, необходимы:

1.точечность зарядов — то есть расстояние между заряженными телами много больше их размеров — впрочем, можно доказать, что сила взаимодействия двух объёмно распределённых зарядов со сферически симметричными непересекающимися пространственными распределениями равна силе взаимодействия двух эквивалентных точечных зарядов, размещённых в центрах сферической симметрии;

2.их неподвижность. Иначе вступают в силу дополнительные эффекты: магнитное поле движущегося заряда и соответствующая ему дополнительная сила Лоренца, действующая на другой движущийся заряд;

3.взаимодействие в вакууме.

Однако с некоторыми корректировками закон справедлив также для взаимодействий зарядов в среде и для движущихся зарядов.[2]

В векторном виде в формулировке Ш. Кулона закон записывается следующим образом:

где — сила, с которой заряд 1 действует на заряд 2; q1,q2 — величина зарядов; — радиус-вектор (вектор, направленный от заряда 1 к заряду 2, и равный, по модулю, расстоянию между зарядами — r12); k — коэффициент пропорциональности.

Относи́тельная диэлектри́ческая проница́емость среды ε — безразмерная физическая величина, характеризующая свойства изолирующей (диэлектрической) среды. Связана с эффектом поляризации диэлектриков под действием электрического поля (и с характеризующей этот эффект величиной диэлектрической восприимчивости среды). Величина ε показывает, во сколько раз сила взаимодействия двух электрических зарядов в среде меньше, чем в вакууме. Относительная диэлектрическая проницаемость воздуха и большинства других газов в нормальных условиях близка к единице (в силу их низкой плотности). Для большинства твёрдых или жидких диэлектриков относительная диэлектрическая проницаемость лежит в диапазоне от 2 до 8 (для статического поля). Диэлектрическая постоянная воды в статическом поле достаточно высока — около 80. Велики её значения для веществ с молекулами, обладающими большим электрическим диполем. Относительная диэлектрическая проницаемость сегнетоэлектриков составляет десятки и сотни тысяч.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]