Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
MSTV_080107.doc
Скачиваний:
139
Добавлен:
11.04.2015
Размер:
3.8 Mб
Скачать

4.2.Числовые характеристики.

Математическим ожиданиемдискретной случайной величины называется:

( 4.4)

В случае бесконечного множества значений в правой части (4.4) находится ряд, и мы будем рассматривать только те значения Х, для которых этот ряд абсолютно сходится.

М(Х)представляет собой среднее ожидаемое значение случайной величины. Оно обладает следующими свойствами:

  1. М(С)=С, где С=const

  2. M (CX)=CM (X) (4.5)

  3. M (X+Y)=M(X)+M(Y), для любых Х и Y.

  4. M (XY)=M (X)M(Y), если Х и Y независимы.

Для оценки степени рассеяния значений случайной величины около ее среднего значения M(X)=а вводятся понятиядисперсии D(X)и среднего квадратического (стандартного) отклонения.Дисперсиейназывается математическое ожидание квадрата разности(X-),т.е. :

D(X)=M(X-)2=pi,

где =М(X);определяется как квадратный корень из дисперсии, т.е..

Для вычисления дисперсии пользуются формулой:

(4.6)

Свойства дисперсии и среднего квадратического отклонения:

  1. D(C)=0, где С=сonst

  2. D(CX)=C2D(X), (CX)=C(X)(4.7)

3) D(X+Y) =D(X)+D(Y),

если Х и У независимы.

Размерность величин исовпадает с размерностью самой случайной величины Х, а размерность D(X) равна квадрату размерности случайной величины Х.

4.3. Математические операции над случайными величинами.

Пусть случайная величина Х принимает значения с вероятностями а случайная величина Y- значения с вероятностями Произведение КX случайной величины Х на постоянную величину К - это новая случайная величина, которая с теми же вероятностями , что и случайная величина Х, принимает значения, равные произведениям на К значений случайной величины Х. Следовательно, ее закон распределения имеет вид таблица 4.2:

Таблица 4.2

...

...

Квадратслучайной величины Х, т.е., - это новая случайная величина ,которая с теми же вероятностями, что и случайная величина Х, принимает значения, равные квадратам ее значений.

Суммаслучайных величин Х и У - это новая случайная величина, которая принимает все значения видас вероятностями, выражающими вероятность того, что случайная величина Х примет значениеа У - значение, то есть

(4.8)

Если случайные величины Х и У независимы, то:

(4.9)

Аналогично определяются разность и произведение случайных величин Х и У.

Разностьслучайных величин Х и У - это новая случайная величина, которая принимает все значения вида, апроизведение- все значения видас вероятностями, определяемыми по формуле (4.8), а если случайные величины Х и У независимы, то по формуле (4.9).

4.4. Распределения Бернулли и Пуассона.

Рассмотрим последовательность n идентичных повторных испытаний, удовлетворяющих следующим условиям:

1. Каждое испытание имеет два исхода, называемые успех и неуспех.

Эти два исхода - взаимно несовместные и противоположные события.

  1. Вероятность успеха, обозначаемая p, остается постоянной от испытания к испытанию. Вероятность неуспеха обозначается q.

  2. Все n испытаний - независимы . Это значит, что вероятность наступления события в любом из n повторных испытаний не зависит от результатов других испытаний.

Вероятность того, что в n независимых повторных испытаниях, в каждом из которых вероятность появления события равна , событие наступит ровно m раз ( в любой последовательности), равна

(4.10)

где q=1-р.

Выражение (4.10) называется формулой Бернулли.

Вероятности того, что событие наступит:

а) менее m раз,

б) более m раз,

в) не менее m раз,

г) не более m раз - находятся соответственно по формулам:

Биномиальным называют закон распределения дискретной случайной величины Х - числа появлений события в n независимых испытаниях, в каждом из которых вероятность наступления события равна р; вероятности возможных значений Х = 0,1,2,..., m,...,n вычисляются по формуле Бернулли (таблица 4.3).

Таблица 4.3

Число успехов Х=m

0

1

2

...

m

...

n

Вероятность Р

...

...

Так как правая часть формулы (4.10) представляет общий член биноминального разложения , то этот закон распределения называютбиномиальным. Для случайной величины Х, распределенной по биноминальному закону, имеем:

M(X)=nр (4.11)

D(X)=nрq (4.12)

Если число испытаний велико, а вероятность появления события р в каждом испытании очень мала, то вместо формулы (4.10) пользуются приближенной формулой:

(4.13)

где m - число появлений события в n независимых испытаниях, ( среднее число появлений события в n испытаниях).

Выражение (4.13) называется формулой Пуассона. Придавая m целые неотрицательные значения m=0,1,2,...,n, можно записать ряд распределения вероятностей, вычисленных по формуле (4.13), который называется законом распределения Пуассона (таблица 4.4):

Таблица 4.4

M

0

1

2

...

m

...

n

Pn;m

...

...

Распределение Пуассона часто используется, когда мы имеем дело с числом событий, появляющихся в промежутке времени или пространства. Например, число машин, прибывших на автомойку в течении часа, число дефектов на новом отрезке шоссе длиной в 10 километров, число мест утечки воды на 100 километров водопровода, число остановок станков в неделю, число дорожных происшествий.

Если распределение Пуассона применяется вместо биномиального распределения, то n должно иметь порядок не менее нескольких десятков, лучше нескольких сотен, а nр< 10.

Математическое ожидание к дисперсии случайной величины, распределенной по закону Пуассона, совпадают и равны параметру , которая определяет этот закон, т.е.

M(X)=D(X)=np=. (4.14)

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]