Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Экономическая ТЕОРИЯ / Занг В.Б. Синергетическая экономика. Время и перемены в нелинейной экономической теории. 1999

.pdf
Скачиваний:
148
Добавлен:
20.04.2015
Размер:
7.17 Mб
Скачать

где опущены члены, содержащие высшие степени (р-р0)1. Если обозначить начальную цену как р(0), то решение уравнения (2.4.2) дается формулой

Если равновесие устойчиво, то при t+ ∞ имеет место р(t)→ р0. Это выполняется в том и только том случае, если

Когда кривая предложения имеет положительный наклон, последнее условие выполняется. Если же наклон отрицательный, он должен быть менее крутым, чем у кривой спроса. Так что если выполнены условия устойчивости, то ответ на поставленный вопрос получен: когда растет спрос, должна расти цена. Таким образом, результаты сравнительного статического анализа могут быть выведены из условий устойчивости.

В противоположность теории Вальраса, в теории нормальной цены Маршалла количество предложения предполагается величиной саморегулируемой. Если «цена спроса» превышает «цену предложения», количество предложения будет увеличиваться. Сохранив обозначения (2.4.2) и избавившись от высших степеней, получим уравнение

решением которого является

Для того чтобы равновесие было устойчивым, потребуем, чтобы

т. е. наклон кривой предложения относительно оси меньше, чем у кривой спроса. Если Dp < 0, имеем (Sр - Dp)/Sp > 0. Следовательно, условия устойчивости Маршалла требуют, чтобы количество

1Здесь Dp и Sp — производные по переменной р функций D и S соответственно.—Прим. ред.

предложения увеличивалось в любом случае, если увеличивается спрос, тогда как изменения цены оказываются неявно зависящими от знака, наклона кривой предложения. Таким образом, из информации об условиях устойчивости мы немедленно получаем, что рост спроса приведет к увеличению производства2.

Такие соотношения между условиями устойчивости и результатами сравнительной статики названы Самуэльсоном «принципом соответствия». Предполагалось, что если этот принцип верен, то метод сравнений с равновесием можно признать годным для определения последствий данных параметрических изменений. Если заведомо предполагать процесс устойчивым, то малые изменения параметров могут приводить только к плавным изменениям переменных. Никаких внезапных перемен наблюдаться и не может.

Справедливость принципа соответствия зависит от предварительного предположения об устойчивости экономических систем, Важно исследовать, что произойдет, если это предположение ослабить.

2.5Неустойчивость в экономическом анализе

Из сказанного выше мы видим, что гипотеза устойчивости важна, поскольку часто с ее помощью можно получать осмысленные экономические результаты. Многочисленные удачные приложения принципа соответствия к различным экономическим проблемам показали, что этот метод довольно полезен. Однако необходимо подчеркнуть, что принятие гипотезы устойчивости не означает, что экономистам нужно отвергнуть факт наличия неустойчивости, просто отношение к неустойчивостям в экономическом анализе должно быть изменено.

Изменение позиции большинства экономистов относительно гипотезы неустойчивости в экономическом анализе можно проиллюстрировать выдержками из воспоминаний Самуэльсона как классика-теоретика, относящихся к 1932-37 годам: «поскольку, естественно, теоретик равновесия стремился рассматривать модели, в которых процессы устремляются к единственному положению независимо от начальных условий... честно говоря, мы, теоретики, надеялись не вводить явления гистерезиса в нашу модель..., но в реальности мы неявно использовали модели, содержащие гистерезис:

Испания не могла бы оставаться прежней после Колумба... очевидно, что в таких моделях в результате введения в систему определенного

2Здесь предполагается, что в точке равновесия выполнено условие Sp > Dp. Из этого неравенства следует, что для обеспечения устойчивости точки равновесия необходимо, чтобы Dp < 0. — Прим. ред.

разбалансирующего фактора М все действительные переменные не остаются неизменными...» (Самуэльсон, 1972, с. 540-1).

Принятие концепции устойчивости в экономическом анализе было в значительной степени обусловлено развитием естественных наук, где для проведения осмысленного анализа динамических систем требовалась их устойчивость. Для экспериментальных наук это значит, что дескриптивные модели должны приводить к одним и тем же качественным результатам, если эксперимент повторяется при малых изменениях условий. Такое отношение к реальности вытекало из потребности в том, чтобы она была действительно устойчивой в некотором структурном смысле. А убеждение в том, что малые изменения окружающих условий не приведут к коренным и качественным различиям в поведении реальной системы, представляет собой наследие механистически ориентированного 19-го века. В соответствии с идеями детерминистической механики, сложные явления, которые не могут быть объяснены с привлечением обычных моделей, сводятся либо к постулату, что подобные явления не подлежат аналитическому рассмотрению, либо к утверждению, что система находится под воздействием чисто стохастических влияний. Как следствие, хаотические явления в эволюционных системах трактуются как преходящие явления или простые возмущения долговременной равновесной эволюции.

Ныне эта точка зрения на устойчивость претерпела изменения. Устойчивость более не предполагается в науке априорно. Показано, что малые сдвиги параметров могут приводить к структурным изменениям динамических систем. Такие структурные изменения в эволюционных системах являются не исключительными, а, скорее, общими случаями. Для нелинейных неустойчивых систем характерны сложные явления, такие, как регулярные осцилляции и хаос. Даже в относительно простых нелинейных динамических системах может наблюдаться спонтанное образование (из хаоса) сложно организованных структур. Было найдено, что сложно организованные пространственные, временные или пространственно-временные структуры возникают из хаотических состояний, и в таких самоорганизующихся системах вместо устойчивости и гармонии мы обнаруживаем эволюционные процессы, приводящие к еще большему разнообразию и усложнению структур (Николис и Пригожин, 1977, Хакен, 1977, 1983).

Мы покажем, что эти идеи могут быть приложены и к экономике. В современных экономических системах на повестке дня оказались медленные процессы, сменяющиеся резкими, иногда непредсказуемыми переменами. Экономические системы, такие, как рынки труда, кредитно-денежные рынки, урбанистические системы, системы перевозок и связи, характеризуются наличием хаоса.

Все эти хорошо наблюдаемые, запутанные явления не могут быть адекватно объяснены существующими экономическими теориями. Растущее признание значения подобных нерегулярностей — или структурных изменений и хаотических явлений — вызывает фундаментальную потребность в новых теоретических идеях и инструментах, которые могли бы позволить проводить исследования за границами традиционной экономики, базирующейся на теории оптимизации, анализе устойчивости и сравнительной статике. Синергетическая экономика предоставляет новые теоретические рамки и методы, способные удовлетворить эти потребности.

Воодушевленные современными работами математиков и представителей естественных наук в области нелинейных динамических систем, некоторые экономисты приступили к объяснению сложных экономических явлений, вводя в

динамический анализ факторы неустойчивости и нелинейности. Эти исследования дали начало новому направлению в анализе экономических явлений.

3Элементы математической теории динамических систем

Приближение к более глубокому пониманию основных принципов физики связано со все более сложными математическими методами.

Альберт Эйнштейн

Математика—служанка современной науки. Без ее участия вряд ли оказались бы возможны многие из нынешних глубоких проникновении науки в суть природы. С другой стороны, математика живет своей собственной жизнью. Труды Ньютона, Лейбница и фон Неймана являют собой прекрасный пример взаимодействия между математикой и другими науками.

Можно утверждать, что и современная экономика характеризуется применением математики к самым разным своим проблемам. Наиболее полного понимания чисто экономических вопросов нельзя достичь без привлечения математики. Не прибегая к языку математики, было бы трудно объяснить понятия экономического равновесия и неравновесия, устойчивости и неустойчивости, экономически устойчивых состояний и экономического хаоса.

История применения математики в экономике так же стара, как история самой математики. Дифференциальное исчисление использовалось в экономике еще с начала девятнадцатого века (Курно, 1838). Именно благодаря использованию этого аппарата Вальрас (1874) и Парето (1908) сформулировали теорию общего экономического равновесия, которая в период второй мировой войны достигла своей кульминации в «Величине и капитале» Хикса (1939) и «Основах экономического анализа» Самуэльсона (1947). После второй мировой войны широкое применение в экономике нашли такие разделы математики, как выпуклый анализ, топология и др. (Никайдо, 1968, Эрроу и Хан, 1971, Такаяма, 1985, Мак-Колелл, 1985, Андерсон, Эрроу и Пайнс, 1988). В последнее время для исследования экономических эволюционных процессов все шире стали использовать теорию катастроф и теорию бифуркаций. Представляется, что запаздывание во времени между получением

математических результатов и их приложением в экономике имеет тенденцию к сокращению — в самом деле, прежде; чем нашло применение исчисление бесконечно малых, прошло около полутора столетий; а чтобы найти применение теории катастроф и теории бифуркаций, экономистам понадобилось всего несколько лет.

В этой главе обсуждаются некоторые математические методы, потенциально полезные с точки зрения синергетической экономики. Здесь изучаются только такие динамические системы, которые описываются детерминированными обыкновенными дифференциальными уравнениями. Другие типы динамических систем, связанные с пространственными зависимостями и стохастичностью, будут обсуждаться позже.

3.1Динамика и равновесие

Обыкновенные дифференциальные уравнения широко используются в теории экономической динамики. В общем случае динамические взаимодействия между экономическими переменными, такими, как цены, заработная плата и капитал, описываются системами дифференциальных уравнений. Некоторые динамические задачи приводят к (параболическим) уравнениям в частных производных, но эти типы уравнений мы рассмотрим, когда будем изучать проблемы формирования городских структур. В общем виде динамическая система может быть записана так:

где x: = x(r,t) вектор зависимых переменных, r — расстояние, ƒ (х) — нелинейная вектор-функция от х, a D — матрица диффузии. Например, в упрощенной модели Кейнса, о которой будет речь в разд. 5.3, компонентами вектора х (при D = 0) являются национальный доход и ставка процента. В модели города из разд. 8.4 переменная x(r, t) представляет собой плотность населения и земельную ренту, а r

— расстояние от произвольной точки городского пространства до центрального делового района (ЦДР). Таким образом система (3.1.1) может использоваться для описания процесса градоформирования, который отображается динамикой переменной х в пространстве. В дальнейшем мы пренебрежем диффузионными членами. Дифференциальные уравнения в частных производных будут рассмотрены отдельно в гл. 8.

Без учета пространственных зависимостей система (3.1.1) может быть записана как

x=f(x). (3.1.2)

Мы дадим беглый очерк некоторых методов анализа таких уравнений.

За более полным изложением отсылаем читателя, например, к Коддингтону и Левинсону (1955) или к Чу и Хейлу (1982).

Первое основное утверждение относительно таких уравнений известно как теорема Пикара-Коши-Липшица, которая звучит следующим образом:

Теорема 3.1.1. Рассмотрим систему уравнений

x= f(x,t).

Пусть функции fi(x, t) удовлетворяют условиям Липшица по всем своим переменным (т. е. непрерывны и ограничены в некоторой замкнутой области, и для

всех х,

 

х' из

этой

области существует

такая

 

постоянная

L,

что

 

f

(x′, t)f

i

(x, t)

 

L

 

x

x

k

 

Прим. перев.).

Тогда

в

окрестности

t

= t

 

 

 

 

 

i

 

 

 

 

 

k

 

 

 

 

 

 

 

0

k

существует единственное решение х = x(t), удовлетворяющее начальным условиям x(0). Более того, это решение является непрерывной функцией начальных условий. Если

õ& = f(x,t,r),

где r — параметр, и каждая функция fi, в окрестности точки r0 удовлетворяет условию Липшица равномерно по r и является по r непрерывной, то предыдущие утверждения выполняются во всей окрестности r0. И сверх того, х = x(t,r) является непрерывной в этой окрестности.

Понятие устойчивости определяется следующим образом.

Определение 3.1.1. (Устойчивость.) Рассмотрим систему dx/dt = f(x, t). Решение х = u(t), определенное на [t0, ∞], устойчиво, если для любого заданного > 0 существует такое δ, что если и*(t0) — произвольный вектор, удовлетворяющий условию

то решение x=u*(t) с начальными условиями x(t0) = u*(t0) существует на [t0, ∞] и удовлетворяет условию

для всех t t0.

Определение 3.1.2. (Асимптотическая устойчивость.) Решение u(t)

асимптотически устойчиво, если (а) оно устойчиво и (b) существует µ > 0, такое, что если

то

Решение асимптотически устойчиво в целом, если µ. может быть выбрано произвольно большим.

Определение 3.1.3. (Неустойчивость.) Решение и(t) неустойчиво, если для некоторого достаточно малого положительного и любого δ > 0 существует решение u*(t), такое, что для некоторого t > t0 выполняются условия (а)

и(b)

Вповседневной жизни можно найти множество примеров, помогающих понять суть явления неустойчивости. Покоившаяся первоначально жидкость, перейдя к макроскопическим колебаниям, тем самым переходит от старого состояния равновесия в новое, теряя, таким образом, свою устойчивость. В условиях физического эксперимента, когда мы изменяем определенные условия, например входную мощность, система может пройти через ряд неустойчивых состояний, приводящих к совершенно различным типам поведения. Сложное неустойчивое поведение можно изучать также на примере динамики обменных курсов валют на экономических рынках.

Определение 3.1.4. (Орбитальная устойчивость.) Решение u(t) автономной системы dx/dt = f(x) является орбитально устойчивым, если для любого данного> 0 существует δ > 0, такое, что если

то

для любого t t0.

Понятия устойчивости и орбитальной устойчивости не следует путать. Для иллюстрации различия на рис. 3.1 приведен следующий пример. Предположим, что С и С' — две орбиты разных периодов. Хотя расстояние между ними остается все время ограниченным, расстояние между двумя точками 1 и 1′ на этих орбитах вследствие сдвига фаз, порожденного разностью периодов, с течением времени может увеличиваться. Таким образом, даже если

Рис. 3.1. Сравнение понятий устойчивости и орбитальной устойчивости.

орбита С орбитально устойчива, соответствующее ей решение не обязательно устойчиво.

Все эти определения, сформулированные для dx/dt = f(x,t), справедливы и для автономных систем, когда f(x,t) = f(x).

Точка равновесия автономной системы x0 определяется из условия f (x0) = 0. В этом случае х = x0 является решением исходной системы уравнений. Равновесие является (асимптотически) устойчивым, если решение х = x0 (асимптотически) устойчиво.

Для иллюстрации этих понятий рассмотрим модель экономического роста Солоу. Эта модель играет важную роль в неоклассической теории экономического роста. Можно сказать, что большинство неоклассических моделей роста являются расширениями и обобщениями пионерских работ Солоу (1956) и Свана (1956) (см. также Занг, 1989).

При построении модели Солоу предполагал, что есть только один вид товара (длительного пользования); рынки сбыта продукции работают бесперебойно; предложение производственных факторов неэластично (т. е. они существенно не понижаются и не повышаются при изменении цен), и все доступные факторы в каждый момент полностью используются. Все сбережения гражданами добровольно сдаются и абсорбируются фирмами для накопления капитала. Существуют два производственных фактора: капитал К и труд L. Технология не подвержена никаким изменениям. Процесс производства описывается некоторой достаточно гладкой

функцией

 

Y=F(K, L),

(3.1.3)

где Y — поток продукции, зависящий от конкретных значений К и L. Производственная функция F считается неоклассической, если она удовлетворяет следующим условиям: (1) F(K, L) неотрицательна, если К и L неотрицательны; (2) F(0,0) = 0; (3) приросты

функции FK и FL неотрицательны; (4) существуют вторые частные производные функции F по К и L; (5) функция однородна первого порядка: F(rK, rL) == rF(K,L) для всех неотрицательных r; (6) функция строго квазивогнута.

Предполагается, что L экзогенно возрастает с Постоянным темпом роста п:

L = L0exp(nt).

Предполагается также, что постоянная доля s общего объема производства идет на сбережение и, выпадая из сферы потребления, добавляется к суммарному капиталу. Если пренебречь процессом обесценивания капитала, то имеем dK/dt = sY, К(0) > 0. В случае неоклассической функции приходим к соотношению

где k = K/L, f(k)= F(K,L)/L = F(k, 1). Функция f(k) обладает следующими свойствами:

f(0) =0, f '(k) > 0 при k0;

f "(k)< 0 при k0.

Существование решений уравнения (3.1.4) можно доказать. Хорошо известно, что в модели Солоу после определения динамики объема капитала на душу населения может быть рассчитана динамика всех остальных переменных — К, Y, потребления, накопления, заработной платы, суммы арендных платежей.

Теорема 3.1.2. (Существование равновесия.) Если п и s удовлетворяют неравенству

то существует единственное положительное значение k0, такое, что sf(k0)/n = k0.

Доказательство теоремы можно найти, например у Купманса (1965). Фазовую диаграмму модели Солоу при условии (3.1.5) можно представить схематически, как на рис. 3.2.

Следующая ниже теорема доказывает устойчивость равновесия в модели Солоу.

Теорема 3.1.3. (Устойчивость равновесия.) Система Солоу глобально устойчива (Эрроу и Гурвиц, 1958). Более того, в области k > 0 равновесие является асимптотически устойчивым.

Асимптотическая устойчивость может быть доказана с помощью функции Ляпунова V = U2, где U = k — k0 (Бурмейстер и Добелл, 1970). Динамику экономического развития можно описать

Соседние файлы в папке Экономическая ТЕОРИЯ