Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Questions_for_Advanced_Mathematics.docx
Скачиваний:
181
Добавлен:
20.05.2015
Размер:
1.65 Mб
Скачать

Геометрические свойства векторного произведения

1. Модуль векторного произведения численно равен площади параллелограмма, построенного на множителях (рис. 1.42,6).

2. Векторное произведение равняется нулевому вектору тогда и только тогда, когда множители коллинеарны, т.е.

, в частности, .

Первое свойство следует из определения. Докажем второе свойство. Равенство возможно в трех случаях: , или , или . В каждом из этих случаев векторы и коллинеарны (см. разд. 1.1).

Пример 1.19. Вычислить площади параллелограмма и треугольника, построенных на векторах , где , угол между векторами и равен (рис. 1.44).

Решение. Используя алгебраические свойства, найдем сначала векторное произведение

а затем его модуль .

По первому геометрическому свойству векторного произведения искомая площадь параллелограмма равна , а площадь треугольника в 2 раза меньше: .

Выражение векторного произведения через координаты векторов

Пусть в пространстве задан ортонормированный (стандартный) базис . Векторные произведения базисных векторов находятся по определению:

(1.14)

Формулы (1.14) можно получить, используя диаграмму (рис. 1.45): если на этой схеме кратчайший поворот от первого множителя ко второму совершается в положительном направлении (указанном стрелкой), то произведение равно третьему вектору, а если — в отрицательном направлении, то произведение равно третьему вектору, взятому со знаком минус (противоположному вектору).

Найдем выражение векторного произведения через координаты множителей. Пусть в стандартном базисе векторы и имеют координаты и соответственно. Тогда, используя линейность векторного произведения по любому множителю (см. пункт 2 замечаний 1.12) и формулы (1.14), получаем

Запишем это равенство при помощи определителей второго порядка:

(1.15)

Правую часть (1.15) можно представить как результат разложения символического определителя третьего порядка по первой строке

Формула вычисления векторного произведения

Теорема 1.8 (формула вычисления векторного произведения). Если векторы и в правом ортонормированием базисе имеют координаты и соответственно, то векторное произведение этих векторов находится по формуле (1.15), которую принято записывать в виде

(1.16)

Если и — координатные столбцы векторов и в стандартном базисе, то координатный столбец векторного произведения находится по формуле

В самом деле, выполняя умножение матрицы на столбец, получаем

Тогда , что совпадает с (1.15).

Пример 1.20. Параллелограмм построен на векторах  (рис. 1.46). Найти:

а) векторные произведения и ; б) площадь параллелограмма ; в) направляющие косинусы такого вектора , перпендикулярного плоскости параллелограмма ,

для которого тройка — левая.

Решение. а) Векторное произведение находим по формуле (1.16):

Для нахождения векторного произведения можно использовать матричную запись формулы (1.15) (см. теорему 1.8). Векторам и соответствуют координатные столбцы .

По указанной формуле получаем координатный столбец вектора :

то есть . Результаты совпадают.

Векторное произведение находим, используя алгебраические свойства:

Следовательно, .

б) Площадь параллелограмма находим как модуль векторного произведения :

в) Вектор, противоположный вектору , удовлетворяет перечисленным в условии требованиям, поэтому

Разделив этот вектор на его длину , получим единичныи вектор:

Согласно его координатами служат направляющие косинусы

  1. Мішаний добуток векторів, його властивості та геометричний зміст. Необхідна та достатня умова компланарності векторів. Обчислення мішаного добутку.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]