Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

биология 10-11

.pdf
Скачиваний:
204
Добавлен:
20.05.2015
Размер:
9.4 Mб
Скачать

158

Глава 8. Основы селекции

их опасения сильно преувеличены. Микроорганизмы, изменен ные с помощью генно инженерных манипуляций, во внешней среде не выдерживают конкуренции, поскольку значительную часть своих ресурсов они затрачивают на синтез целевого белка, в ущерб собственной конкурентоспособности.

Достижения ГИ. С развитием ГИ ученые получили возмож ность синтезировать, выделять, комбинировать и перемещать гены и любые другие фрагменты ДНК. ГИ внесла революци онный вклад в развитие многих биологических дисциплин: мо лекулярной биологии, микробиологии, вирусологии, цитологии, эмбриологии, медицинской генетики и генетики человека. Поя вилась ранее недоступная возможность изучения молекулярной организации геномов (в том числе высших эукариот), что при вело к возникновению геномики — раздела генетики, изучающего структурную организацию и функционирование геномов.

ГИ методы позволили реализовать программы секвенирова ния (определения полных нуклеотидных последовательностей ДНК) геномов многих организмов. Уже секвенированы ДНК сотен видов бактерий, дрожжей, плазмодия, риса, кукурузы, картофеля, дрозофилы, мыши; завершена международная про грамма «Геном человека».

Для чего же нужно секвенирование геномов? Одна из основ ных задач — выяснить строение генома и его работу как единого целого. Полная нуклеотидная последовательность — это предва рительная карта генома организма. В первоначальном виде это просто длинная последовательность нуклеотидов, ни о чем не говорящая. Для того чтобы с ней можно было работать, в ней выявляют гены, регуляторные элементы, мобильные элементы и другие последовательности ДНК, функция которых еще не известна. Для медицинской генетики важно нанести на нуклео тидную карту гены, ответственные за различные болезни, чтобы разрабатывать методы молекулярной диагностики, искать спосо бы лечения и предотвращения заболеваний. На карту человека уже нанесены многие гены наследственных заболеваний.

Генная терапия наследственных заболеваний человека.

Развитие этой перспективной области стало возможным после секвенирования генома человека. Генная терапия включает следующие этапы:

1.Получение клеток от больного (в генной терапии разре шено использовать только соматические клетки человека).

2.Введение в клетки лечебного гена для исправления ге нетического дефекта.

3.Отбор и размножение «исправленных» клеток.

4.Введение «исправленных» клеток в организм пациента. Впервые успешно применить генную терапию удалось в 1990 г.

Четырехлетней девочке, страдающей тяжелым иммунодефицитом

§ 37. Генетическая инженерия и биотехнология 

159

 

 

 

(дефект фермента аденозиндезаминазы), были введены собствен ные лимфоциты со встроенным нормальным геном аденозинде заминазы. Лечебный эффект сохранялся в течение нескольких месяцев, после чего процедуру пришлось регулярно повторять, поскольку исправленные клетки, как и другие клетки организма, имеют ограниченный срок жизни. В настоящее время генную терапию используют для лечения более десятка наследственных заболеваний, в т. ч. гемофилии, талассемии, муковисцидоза.

Метод полимеразной цепной реакции (ПЦР). Для полу чения целевой ДНК в достаточных для работы количествах в ГИ широко используется метод ПЦР, разработанный в 1985 г. Метод позволяет размножить в миллионы раз любой участок ДНК размером до 5 тысяч пар нуклеотидов (см. с. 142). Пер вым практическим использованием ПЦР была разработка тест системы для диагностики серповидноклеточной анемии (нарушенные участки ДНК размножали до обнаружимых при электрофорезе количеств). С помощью ПЦР получают фрагмен ты ДНК для клонирования, секвенируют целевые ДНК, выяв ляют патогенные вирусы или бактерии, а также наследственные заболевания и аномалии. В судебной медицине ПЦР используют для идентификации личности, для установления родственных связей. В настоящее время метод ПЦР стал обыденной проце дурой, повседневно используемой в тысячах лабораторий.

Таким образом, разработка методов ГИ и ПЦР привела к бурному прогрессу в биологии, но самые глубокие преобразо вания произошли в биотехнологии.

Биотехнология— отрасль науки, занимающаяся промыш ленным использованием биологических процессов и живых организмов для производства лекарств и вакцин, сельскохо зяйственных и потребительских продуктов.

Биотехнологические процессы люди использовали издревле, занимаясь хлебопечением, виноделием, пивоварением, приго товлением кисломолочных продуктов. Сущность этих процес сов была выявлена лишь в XIX в. после научных открытий Л. Пастера. Работы ученого послужили развитию различных производств с использованием микроорганизмов.

В конце 1970 х гг. на стыке традиционной биотехнологии и ГИ возникла молекулярная биотехнология. В ее основе лежит процедура переноса генов из одного организма в другой по средством методов ГИ с целью создания принципиально нового продукта или промышленного производства уже известного про дукта. Первая фирма, производящая лекарственные соединения с помощью методов ГИ, была создана в 1976 году.

Производство лекарственных препаратов. Микроорганизмы после введения соответствующих генов становятся продуцентами ценных для медицины белков. В биореакторах на специальных

160

Глава 8. Основы селекции

питательных средах выращивают бактерии; грибы; дрожжи, продуцирующие антибиотики; ферменты; гормоны; витамины и другие биологически активные соединения. Например, клетки кишечной палочки служат биологическими фабриками по про изводству человеческого инсулина. До 1982 г. инсулин получали весьма трудоемким способом из поджелудочной железы свиней и обеспечивали только 10 % больных сахарным диабетом. С 1982 г. этой работой «занимается» кишечная палочка и обеспе чивает инсулином десятки миллионов больных по всему свету (в том числе и тех, у кого аллергия на животный инсулин). Кишечная палочка производит человеческий гормон роста со матотропин (ранее его получали из трупного материала).

Противовирусный препарат интерферон в организме человека вырабатывается в крайне незначительных количествах. После выявления аминокислотной последовательности интерферона ген был искусственно синтезирован и встроен в вектор, затем вектор ввели в клетки бактерии и получили штамм продуцент интерферона.

Производство генно инженерных вакцин. Традиционные вакцины изготавливаются из вирусов, инактивированных на греванием или химическим воздействием. Иногда вирус остается жизнеспособным и может при вакцинации вызвать заболевание. Применение ГИ вакцин не имеет такого недостатка. Например, создан продуцент белка поверхностной капсулы вируса гепати та. Этот белок достаточен для выработки в организме челове ка иммунитета против вируса гепатита, и такая вакцинация не в вызовет инфекцию. В настоящее время активно ведутся генно инженерные разработки вакцины против СПИДа.

Производство ГИ микроорганизмов, способных расти на не свойственных для них средах, открывает ряд новых возмож ностей. Такие микроорганизмы используют для биологической очистки окружающей среды (в т.ч. от нефти и нефтепродуктов). На отходах производства нефтепродуктов, гидролизатах дре весины, на метаноле, этаноле, метане успешно культивируют дрожжи. Использование их в качестве кормового белка (дрожжи содержат до 60 % белка) позволяет получать дополнительно до 1 млн т мяса в год. Ведутся работы по созданию микроорганиз мов, производящих ацетон, спирт и другие горючие материалы на отходах сельского хозяйства, лесной и деревообрабатывающей промышленности, а также на сточных водах. В будущем, при истощении ресурсов нефти, этот путь получения горючих ве ществ может оказаться весьма актуальным. Созданы установки, в которых бактерии перерабатывают навоз в биогаз. Из 1 т на воза получают 500 м3 биогаза, что эквивалентно 350 л бензина.

Биотехнология растений. Получены формы растений с ускоренным ростом, большей массой плодов, увеличенной про

§ 37. Генетическая инженерия и биотехнология 

161

должительностью хранения плодов; устойчивые к гербицидам, к патогенным вирусам и грибам, к вредным насекомым, а также к засухе и засоленности почв. Растения продуцируют для человека вакцины, фармакологические белки и антитела. Например, внедрение гена биосинтеза каротина в геном риса позволило вывести «золотой» рис, богатый этим ценным для человека провитамином.

В природе существует бактерия Bacillus thuringiensis, вы рабатывающая эндотоксин белковой природы, действующий на насекомых. Ген, кодирующий этот токсин, был выделен

ивстроен в ДНК картофеля. Такой картофель личинки коло радского жука в пищу употреблять не могут. Аналогичным образом удалось получить устойчивые к сельскохозяйственным вредителям трансгенные формы хлопка, кукурузы, томатов

ирапса. После внедрения в геном винограда гена морозоу стойчивости от дикорастущей капусты брокколи трансгенный виноград стал морозоустойчивым. Эта процедура заняла всего год. Обычно на выведение новых сортов винограда уходит 25—35 лет.

Существенные посевные площади заняты под трансгенные растения в США (68 % мировых посевов трансгенных культур), Аргентине (22 %), Канаде (6 %) и Китае (3 %). В основном выращивают трансгенную сою (62 %), кукурузу (24 %), хлопок (9 %) и рапс (4 %).

Большое значение в сельском хозяйстве имеет производство незаменимых аминокислот, не синтезирующихся в организмах животных. В традиционных кормах их недостаточно, поэтому приходится увеличивать количество пищи. Добавление в пищу 1 т синтезированной микробиологическим путем аминокислоты лизин экономит десятки тонн кормов.

Биотехнология животных. Получение трансгенных живот

ных начинают с создания генетических конструкций, в которых целевой ген находится под контролем промотора, активного в определенной ткани организма, например в клетках молочной железы. Такую конструкцию вводят в оплодотворенную яй цеклетку и помещают животным для вынашивания. Выход здоровых животных пока невелик (менее 1 % эмбрионов), но ученые продолжают исследования. Получены трансгенные ко ровы, овцы, козы, свиньи, птицы, рыбы.

От 20 трансгенных коров можно получить до 100 кг це левого белка в год. Именно столько белка, применяемого для предотвращения тромбов в кровеносных сосудах, требуется человечеству ежегодно. Для получения необходимого людям белка фактора свертывания крови (его применяют для повыше ния свертываемости крови у больных гемофилией) достаточно одной трансгенной коровы.

162

Глава 8. Основы селекции

Актуально создание пород домашних животных, устойчивых к паразитам, бактериальным и вирусным инфекциям. Встраивая гены устойчивости к наиболее распространенным заболеваниям, можно значительно сэкономить на вакцинах и сыворотках (до 20 % от стоимости конечного продукта).

Трансгенных млекопитающих используют в качестве мо дельных систем для поиска способов лечения наследственных заболеваний человека. На мышах отрабатывают методы борьбы со СПИДом, муковисцидозом, болезнью Альтцгеймера, на кро ликах — с онкологическими заболеваниями.

Выводы. В результате применения биотехнологии появились бактерии, растения, животные, которые являются естественны ми биореакторами. Они продуцируют новые или измененные генные продукты, которые не могут быть созданы традицион ными методами скрещивания, мутагенеза и селекции. Кроме того, молекулярная биотехнология дает принципиально новые методы диагностики и лечения различных заболеваний. Одна ко в ряде случаев рекламируемые перспективы оказываются преувеличенными и не всегда соответствуют реальным возмож ностям биотехнологии.

Сорта, полученные методами классической селекции, менее впечатляющи, но имеют свои достоинства, они более устойчи вы и надежны в использовании. Если классическая селекция остается в естественных природных рамках, то современные технологии, оперируя на уровне клеток, хромосом и отдель ных генов, выходят за пределы природных закономерностей. Эти методы используют природные компоненты (клетки, гены

ит. д.), но комбинируют их произвольно. Возможные побочные эффекты во многих случаях трудно предсказуемы. Необходи мы длительные эксперименты на животных и растениях и серьезные исследования. Известно негативное отношение СМИ

ишироких слоев общественности в разных странах к продук ции молекулярной биотехнологии — генно модифицированным (ГМ) продуктам. Вместе с тем становится все более понятным, что использование методов ГИ — один из возможных путей обеспечения продуктами питания стремительно возрастающего населения планеты. Для определения возможных границ ис пользования методов ГИ важно разобраться и в нравственных аспектах вторжения человека в мир Божий.

1.Какие два фермента наиболее важны для ГИ?

2.Для чего нужен метод ПЦР?

3.Каковы основные этапы генно инженерных работ?

4.Назовите основные направления биотехнологии.

5.В чем достоинство классической селекции по сравнению с новейшими методиками?

164

Глава 9. Изменения в популяциях

Глава 9. ИЗМЕНЕНИЯ В ПОПУЛЯЦИЯХ И ПРИСПОСОБЛЕННОСТЬ ОРГАНИЗМОВ

Созданные Творцом формы организмов удивительным об разом приспособлены к различным климатическим условиям и к питанию самой разнообразной пищей. Одни из них обитают в сухих жарких пустынях, другие — в водах северных морей. Одни населяют глубины океанов, другие парят высоко над землей. Небольшие по размеру пираньи — грозные хищники, а громадные слоны питаются исключительно растительной пищей.

Природные условия подвержены переменам, организмы осваивают территории с иным климатом, населенные другими существами, занимают новые экологические ниши, приспосабли ваются к непривычной пище. В результате различных перемен меняется внешний вид, строение и внутренняя организация существ. Материалом для адаптивных изменений служит за ложенная в организмах наследственная изменчивость.

§ 38. Многообразие органического мира. Классификация организмов

На Земле около 1,5 млн видов животных, более 0,5 млн видов растений, сотни тысяч видов грибов и множество микро организмов. Их классификацией — объединением в группы по сходству строения и жизнедеятельности — занимается биоло гическая дисциплина, зародившаяся в XVIII в. и называемая систематикой. Для ученых XVIII—XIX веков поиски системы в природе являлись прежде всего попыткой увидеть закономер ности в плане Творца.

§ 38. Многообразие органического мира

165

В настоящее время ученые выделяют две формы жизни. Неклеточные формы жизни — вирусы.

Клеточные формы жизни включают: Надцарство (или Империя) Прокариоты:

Царство Архебактерии (Архей), Царство Истинные бактерии (Эубактерии),

Надцарство (или Империя) Эукариоты:

Царство Протисты, Царство Животные, Царство Растения,

Царство Грибы.

Надцарства Прокариоты и Эукариоты. Важнейший при знак клетки — наличие или отсутствие отделенного от цито плазмы ядра. Среди клеточных существ различают безъядерные (прокариоты) и ядерные (эукариоты). К прокариотам относят Истинные бактерии и Архебактерии, существенно различаю щиеся строением мембран и оболочки.

Цианобактерии (<греч. kyanos синий) относят к истинным бактериям. Они обладают признаками бактерий (прочные кле точные стенки, отсутствие отделенного от цитоплазмы ядра) и растений (осуществляют фотосинтез, выделяя кислород), поэтому цианобактерии иногда называют синезелеными водорослями. Они живут в виде отдельных клеток или объединяются в ко лонии с образованием нитей. Наличие различных пигментов придает им различную окраску от сине зеленой, фиолетовой и красной до почти черной. Некоторые цианобактерии (например, спирулину) люди употребляют в пищу.

Разделение эукариот на царства представляет для совре менных ученых определенные трудности, в особенности при классификации низших (чаще одноклеточных) эукариот. Совре менная систематика все чаще ориентируется не только на мор фофизиологические, цитологические, биохимические признаки организмов, но и на строение ДНК, РНК, отдельных генов.

Царство Протисты объединяет простейших (одноклеточ ных), одноклеточные водоросли и низшие грибы (стенки их клеток, как и у растений, построены из целлюлозы). Эти орга низмы, согласно гипотезе эволюции, — предки остальных трех царств эукариот.

В ряде классификаций все водоросли относят к царству Растения; в других классификациях царство Протисты вовсе отсутствует: низшие грибы относят к царству Грибы, одно клеточные водоросли — к царству Растения, а простейших — к царству Животные. В некоторых классификациях надцарство Эукариоты подразделяют более чем на 26 царств. Систематика является сегодня одним из самых спорных разделов биологии.

166

Глава 9. Изменения в популяциях

Среди главных причин разногласий ученые называют невыяс ненность основных механизмов эволюции, положенных в основу классификации.

Водоросли, по современным представлениям, являются сборной группой фототрофных организмов, ведущих преиму щественно водный образ жизни. Приспособленностью к свету объясняется различная окраска водорослей. Спектральные компоненты солнечного света пронизывают воду на разную глубину. Красные лучи проникают лишь в верхние слои, а си ние — значительно глубже. Для функционирования хлорофилла необходим красный свет, поэтому зеленые водоросли встреча ются обычно на глубинах в несколько метров. Наличие пиг мента, осуществляющего фотосинтез при желто зеленом свете, позволяет бурым водорослям жить на глубинах до 200 метров. Пигмент красных водорослей использует зеленый и синий свет, поэтому красные водоросли населяют глубины до 268 метров. Из красных водорослей добывают полисахарид агар, используемый для изготовления мармелада, зефира и пастилы.

Царство Грибы объединяет гетеротрофные организмы, тело которых состоит из ветвящихся нитей (гиф), в совокупности об разующих мицелий (грибницу). Грибы всасывают необходимые питательные вещества из окружающей среды (осмотрофное пи тание). Выделяя высокоактивные ферменты, грибы расщепляют (деполимеризуют) белки, нуклеиновые кислоты, целлюлозу, а затем всасывают образовавшиеся мономеры (аминокислоты, ну клеотиды, моносахариды). Царство грибов очень разнообразно, в него входят плесневые грибы и дрожжи, шляпочные грибы и трутовики.

Грибы обладают признаками животных и растений. Они не содержат хлорофилла и не способны к фотосинтезу, а подобно животным питаются готовыми органическими веществами. Конечным продуктом метаболизма азота, как и у животных, является мочевина. Запасное питательное вещество, как и у животных, — полисахарид гликоген (в растениях запасающую функцию выполняет обычно крахмал). Прочность клеточным стенкам большинства грибов, так же как покрову жуков и панцирю крабов, придает хитин (клеточные стенки низших грибов, относимых к протистам, состоят из целлюлозы). При крепленный образ жизни, неограниченный рост и способы размножения (в основном, спорами и грибницей, но для ряда грибов возможно половое размножение) сближают грибы с растениями. Любопытный симбиоз представляют собой ли шайники. Их тело состоит из грибницы, в которой живут цианобактерии и водоросли.

Царство Растения объединяет фотосинтезирующие организ мы, выделяющие кислород и запасающие крахмал, имеющие

§ 38. Многообразие органического мира

167

плотные клеточные стенки (обычно из целлюлозы). В царство растений входят 7 отделов: многоклеточные водоросли, мхи, плауны, хвощи, папоротники, голосеменные и покрытосеменные растения. Классификация проведена по ряду сходных призна ков. Например, отдел покрытосеменных выделен по признаку наличия цветка и защищенного плодом семени. Высшие рас тения характеризуются разделением тела на органы (корень, стебель, лист). Тело низших растений не имеет разделения на органы, к ним относят, например, некоторые мхи.

Царство Животные. Существенным их отличием является подвижный образ жизни. Но этот критерий не абсолютный. Так, коралловые полипы — неподвижные животные, а эвглена и вольвокс — подвижные водоросли. В связи с необходимостью движения большинство клеток животных не имеет плотной наружной оболочки, их основное запасающее вещество — легко растворимый гликоген, а не крахмал.

Царство животных объединяет беспозвоночных и хордовых. Подцарство многоклеточных беспозвоночных включает 6 типов: кишечнополостные; плоские, круглые и кольчатые черви; мол люски и членистоногие. Тип членистоногих объединяет 3 клас са: ракообразные, паукообразные и насекомые — эти существа имеют сегментарные конечности. Тип хордовых состоит из 3 подтипов: оболочники, бесчерепные и черепные (позвоночные). В подтип позвоночных входит 7 классов: круглоротые, надкласс рыб (классы хрящевых и костных), земноводные, пресмыкаю щиеся, птицы и млекопитающие. Классы последовательно под разделяются на отряды, семейства, роды и виды.

Представители типа членистоногих:

1 — бабочка, 2 — паук, 3 — муха, 4 — клещ, 5 — жук, 6 — кузнечик, 7 — рак, 8 — многоножка

3

4

5

12

6

78