Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
El_tekh.docx
Скачиваний:
46
Добавлен:
08.06.2015
Размер:
183.47 Кб
Скачать

12. Активная реактивная, полная мощность.

Р = Ur*I = I^2*r — активная мощность цепи, Вт, кВт; QL = UL*I = I^2*XL —реактивная индуктивная мощность цепи, обусловленная энергией магнитного поля, вар.

QС = UС*I = I^2*XС — реактивная емкостная мощность цепи, обусловленная энергией электрического поля, вар.

Q = QL - QС = I^2x — реактивная мощность цепи, вар, это та мощность, которой приемник обменивается с сетью;

S = U*I = I^2*Z— полная мощность цепи. В • А;

cos φ = r/z = P/S—коэффициент мощности

Реактивные мощности, обусловленные соответственно энергией магнитного поля индуктивности и электрического поля емкости, не совершают никакой полезной paботы, они оказывают существенное влияние на режим работы электрической цепи. Коэффициент мощности показывает, какая часть полной мощности является активной мощностью. Полная мощность и коэффициент мощности наряду с другими параметрами являются расчетными величинами и в конечном счете определяют габаритные размеры трансформаторов и других устройств. Ваттметр измеряет активную мощность Р цепи.

14. Закон Ома для цепи синусоидального тока.

Если ток является синусоидальным с циклической частотой , а цепь содержит не только активные, но и реактивные компоненты (ёмкости, индуктивности), то закон Ома обобщается; величины, входящие в него, становятся комплексными: I=U/Z;

U = U0eiωt — напряжение или разность потенциалов,

I — сила тока,

Z = Re−iδ — комплексное сопротивление (импеданс),

R = (Ra^2 + Rr^2)^1/2 — полное сопротивление,

Rr = ωL − 1/(ωC) — реактивное сопротивление (разность индуктивного и емкостного),

Rа — активное (омическое) сопротивление, не зависящее от частоты,

δ = − arctg (Rr/Ra) — сдвиг фаз между напряжением и силой тока.

15. Треугольник сопротивлений и проводимостей.

Из выражения Z=R+jX, вытекает, что модуль комплексного сопротивления равен z=(r^2+x^2)^0.5, следовательно z, можно представить, как гипотенузу прямоугольного треугольника, в котором один из катетов= r, а другой =x, а tg(ФИ)=x/r. Аналогично представляется треугольник проводимости, y=(g^2+b^2)^0.5, только в нем tg(ФИ)= b/g.

Треугольник сопротивлений и проводимостей дает графическую интерпретацию связи между полным сопротивление и активного и реактивного сопротивления, а также полной проводимость, и активной и реактивной проводимостью.

16. Законы Кирхгофа в символической форме записи

Первый закон:

Алгебраическая сумма значений токов, сходящихся в любом узле схемы, равна нулю:

Σ Ik= 0

Второй закон:

Алгебраическая сумма падений напряжения в любом замкнутом контуре равна алгебраической сумме ЭДС вдоль того же контура:

Σ Ik*Zk=ΣEk

(Величины в уравнениях являются комплексными (с точками сверху))

12, 17. Активная, реактивная и полная мощности. Коэффициент мощности

Активная мощность P– среднее значение мгновенной мощностиpза период Т:

P= 1 /T*0Tpdt, [P] = Вт

Реактивная мощность Q– произведение напряженияUна участке цепи на токIпо этому участку на синус угла φ междуUиI:

Q=U*I*sin(φ), [Q] = ВАр (вольт-амперы реактивные)

Полная мощность: S=U*I, [S] = ВА

P^2 +Q^2 =S^2 – т.е. графически можно представить в виде прямоугольноготреугольника мощности

Коэффициент мощности показывает, насколько сдвигается по фазе переменный ток, протекающий через нагрузку, относительно приложенного к ней напряжения:

cos(φ) =P/S

18. Мгновенная мощность и колебание энергии в цепи синусоидального тока

Мгновенная мощность– произведение мгновенного значения напряженияuна участке цепи на мгновенное значение токаi, протекающего по этому участку:

p=u*i

Энергия магнитного поля катушки: Wм =L*i^2 / 2

Энергия электрического поля конденсатора: Wэ =C*uC^2 / 2

19. Эквивалентные преобразования в электрических цепях

Теорема компенсации: в любой электрической цепи без изменения токораспределения сопротивление можно заменить ЭДС, численно равной падению напряжения на заменяемом сопротивлении и направленной встречно току в этом сопротивлении.

Несколько параллельно включённых ветвей, содержащих источники ЭДС и тока и сопротивления можно заменить одной эквивалентной ветвью со следующими параметрами:

gэ = Σgk

Eэ = (ΣEk*gk+ ΣIk) / Σgk

20. Метод законов Кирхгофа

1. Произвольно выбрать положительные направления токов в ветвях и направления обхода контуров

2. Составить уравнения по первому закону Кирхгофа для всех узлов, кроме одного

3. Составить уравнения по второму закону Кирхгофа так, чтобы в каждый новый контур, для которого составляют уравнение, входила хотя бы одна новая ветвь, которая ещё не входила ни в одно из уравнений

21. Метод контурных токов

Применяется для уменьшения числа уравнений в системе и теоретическом анализе схемы. За искомые токи принимают контурные токи и составляется система уравнений по второму закону Кирхгофа, число уравнений равно числу независимых контуров:

I11 * R11 + I22 * R12 + … = E11

I11 * R21 + I22 * R22 + … = E22

где I11,I22 – контурные токи;R11,R22 – суммы сопротивлений в контуре;R12,R21 – взаимные сопротивления контуров, взятых с минусом;E11,E22 – сумма ЭДС в контуре. После нахождения контурных токов вычисляют исходные токи

22. Принцип наложения и метод наложения

Принцип наложения: ток вk-цепи равен алгебраической сумме токов, вызываемых каждой из ЭДС:

Ik = E1 * gk1 + E2 * gk2 + … + En * gkn

По методу наложения поочерёдно рассчитывают токи, возникающие от действия каждой из ЭДС, мысленно удаляя из схемы остальные, затем находят исходные токи в ветвях

23. Входные и взаимные проводимости ветвей

Коэффициенты g(из предыдущего вопроса) имеют размерность проводимости. Коэффициенты с одинаковыми индексами (gmm) называют входными проводимостями ветвей (ветвиm), коэффициенты с разными индексами (gkm) – взаимными проводимостями ветвей (ветвейkиm) (k– ветвь с ЭДС,m– текущая ветвь)

24. Метод узловых потенциалов

За неизвестные принимают потенциалы узлов схемы и составляется система уравнений по первому закону Кирхгофа, число уравнений равно числу узлов минус 1:

φ1 * g11 + φ2 * g12 + … = I11

φ1 * g21 + φ2 * g22 + … = I22

где φ1,φ2 – потенциалы узлов;g11,g22 – суммы проводимостей всех ветвей, сходящихся в узле;g12,g21 – сумма проводимостей ветвей между узлами, взятых с минусом;I11,I22 – узловые токи, равные сумме токов, полученных от деления ЭДС, подходящих к узлу, на сопротивление данных ветвей. После решения системы определяют токи в ветвях по закону Ома для участка цепи, содержащего ЭДС

25. Метод эквивалентного генератора

По отношению к выделенной цепи всю остальную часть схемы можно заменить эквивалентным генератором, состоящим из ЭДС E=Uxxи сопротивленияRвх

1. Ветвь, ток в которой необходимо определить, размыкают и находят напряжение на её зажимах

2. Определяют входное сопротивление Rвх всей схемы относительно зажимов при закороченных источниках ЭДС

3. Рассчитывают ток: I=Uxx/ (R+Rвх)

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]