Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Курс лекций_ТВ непрод.doc
Скачиваний:
1538
Добавлен:
11.06.2015
Размер:
4.22 Mб
Скачать

3. Характеристика химических волокон и нитей

В зависимости от исходных материалов химические волокна и нити делят на искусственные и синтетические. Искусственные волокна производят из природных полимеров – целлюлозы, белков. Синтетические волокна и нити получают на химических заводах из высокомолекулярных соединений (полимеров), полученных синтезом простых веществ (мономеров), которые, в свою очередь, являются продуктами переработки нефти и газа (этилен, бензол, фенол, пропилен и др.). (Классификация химических нитей и волокон представлена на рис. 2.2).

Для изготовления большинства химических волокон и нитей исходный твердый полимерный материал путем растворения или плавления переводят в жидкое состояние и под давлением нагнетают по системе разветвленных трубок, концы которых закрыты фильерами – колпачками с маленькими отверстиями (0,05-0,1 мм). Выдавливаемые через них непрерывные струйки жидкого полимера вследствие испарения растворителя, или физико-химического взаимодействия с окружающей средой, или охлаждения, затвердевают и превращаются в элементарные нити, которые наматываются на приемные устройства. При формовании получают либо комплексные нити, состоящие из нескольких элементарных нитей (от 12 до 100), либо штапельные волокна – отрезки нитей длиной 50 –150 мм в зависимости от назначения. Чтобы получить штапельные волокна, используют фильеры с большим количеством отверстий: 1200 – 5000, иногда 12000 – 15000. При этом собранные вместе элементарные нити образуют жгут, который в последующем разрезается на волокна заданной длины.

Химические волокна и нити непосредственно после формования не могут быть использованы для производства текстильных материалов. Они требуют дополнительной отделки и текстильной переработки с целью повышения прочности, мягкости, снижения электризуемости и т.п. Одним из основных направлений расширения и улучшения ассортимента химических волокон является их модификация для придания новых заранее заданных свойств.

В таблице 2.1. представлены современные методы модификации химических волокон.

Химическая модификация заключается в частичном направленном изменении химического состава основного волокнообразующего полимера, в результате чего получают волокна с новыми свойствами.

Таблица 2.1.

Методы модификации химических волокон

Модификация

Физическая

Химическая

Волокна:

профилированные,

полые,

многослойные,

текстурированные,

люминесцентные,

би- и многокомпонентные,

ультратонкие

Волокна из сополимеров:

высокоэластичные,

износостойкие,

огнестойкие,

бактерицидные,

с улучшенным внешним видом

Физическая модификация заключается в направленном изменении надмолекулярного строения волокон – Ковры ручной работы

Ворсовые и безворсовые ковры и ковровые изделия ручного ткачества вырабатывают на вертикальных и горизонтальных ковроткацких станках. Последние состоят из двух боковых стоек, связей между ними и двух валов или брусьев для натягивания нитей основы.

Хлопчатобумажную основу изготавливают путем непрерывного наматывания нитей основы на верхний или нижний вал; для образования зева служит специальное устройство.

формы поперечного сечения, тонины и т.д.

Искусственные волокна.

Вискозное волокно – одно из первых химических волокон, вырабатываемых в промышленных масштабах. Для его изготовления используют древесную, преимущественно еловую, целлюлозу, которую путем обработки химическими реагентами превращают в прядильный раствор – вискозу. Вискозные волокна обладают повышенным блеском, напоминающим шелк; отличаются высокой гигроскопичностью (11–12%), поэтому изделия из них хорошо впитывают влагу и являются гигиеничными. Они устойчивы к истиранию, имеют высокую термостойкость, средние прочность и удлинение.

Однако вискозное волокно имеет ряд существенных недостатков – это сильная сминаемость из-за низкой упругости, высокая усадка и большая потеря прочности в мокром состоянии. Для снижения недостатков вискозное волокно модифицируют и выпускают в следующих формах: стандартное; с повышенной прочностью; полинозное; высокомодульное; текстурированное; в виде пряжи для проводов; полое.

Ацетилцеллюлозные волокна.Основным сырьем для получения ацетилцеллюлозных волокон является хлопковый пух и облагороженная древесная целлюлоза. При воздействии на целлюлозу уксусным ангидридом, уксусной и серной кислотами образуется ацетилцеллюлоза, из раствора которой получают ацетатные волокна или нити. В зависимости от количества гидроксильных групп в целлюлозе, замещенных ацетильными группами, получают диацетатные (ацетатные) и триацетатные волокна. Формула триацетатного волокна: –С6Н7О2(ООССН3)3–.Основными недостатками изделий из ацетилцеллюлозных нитей является пониженная прочность, гигроскопичность, стойкость к истиранию, повышенная электризуемость, в результате чего нецелесообразно их применение в ассортименте подкладочных, сорочечных, костюмных тканей. Ацетатные волокна более гигроскопичны, чем триацетатные. По сравнению с ацетатными волокнами триацетатные имеют более высокую устойчивость к светопогоде, тепловому старению, дают более стойкие эффекты плиссировки и тиснения полотен, а окраски более прочные к мокрым обработкам. Изделия из триацетатных нитей меньше сминаются в процессе носки и стирки, а их прочность после многократных стирок уменьшается меньше, чем ацетатных и вискозных. Ацетилцеллюлозные волокна широко применяются для сигаретных фильтров, так как обладают повышенной способностью к сорбции вредных веществ.

Синтетические волокна

Синтетические волокна представляют собой наиболее широкий по количеству разновидностей класс исходных текстильных материалов (рис. 2.2.).

Синтетические волокна по сравнению с искусственными и натуральными обладают высокими механическими свойствами, износоустойчивостью, малыми сминаемостью и усадкой, но их гигиенические свойства невысокие, поэтому их подвергают модификации.

Полиэфирные волокна

Среди синтетических текстильных материалов первое место в мире по объему производства с середины 70-х годов столетия заняли полиэфирные. В России принято их название лавсан, в Англии – терилен, в США – дакрон.

Лавсановое волокно характеризуется высокой механической прочностью, отличной несминаемостью, превосходящей все текстильные волокна, в том числе и шерсть. Изделия из лавсановых волокон в 2-3 раза меньше сминаются, чем шерстяные. Чтобы изделия из целлюлозных волокон стали малосминаемыми, в смеску к ним добавляют 45-55% лавсановых волокон. Лавсановое волокно обладает хорошей стойкостью к свету и атмосферным воздействиям, поэтому его целесообразно использовать в гардинно-тюлевых, тентовых, палаточных изделиях. Оно термопластично, благодаря чему изделия хорошо сохраняют эффекты плиссе и гофре. Недостатками лавсанового волокна являются низкая гигроскопичность (до 1%), плохая окрашиваемость, повышенная жесткость, электризуемость и пиллингуемость. Область применения лавсановых нитей и волокон, особенно текстурированных, чрезвычайно широка: ткани и трикотаж бытового назначения, ткани для интерьеров жилья, салонов автомобилей, корд для автомобильных шин, фильтры, щетки, канаты и многое другое.

Полиамидные волокна

Второе место по тоннажу среди синтетических нитей и волокон в мировом производстве занимают полиамидные материалы. Полиамидные волокна получили название по названию полимера, отдельные звенья макромолекулы которого соединены амидными группами ( - CONH- ). В России полиамидные волокна имеют торговое название капрон, в Германии – дедерон, перлон, в США – найлон-6, ПА 6, ПА 66, антрон и др. К положительным свойствам капронового волокна относят высокую прочность, а также самую большую из текстильных волокон устойчивость к истиранию по изгибам. Эти ценные свойства используют при введении капронового волокна в смеску с другими волокнами для получения износостойких материалов. Так, введение 5–10% капронового волокна в шерстяную ткань в 1.5–2 раза повышает ее стойкость к истиранию. Капроновое волокно также обладает малой сминаемостью и усадкой, устойчивостью к действию микроорганизмов.

Однако капроновое волокно мало гигроскопично (3,5–4,5%), жесткое, сильно электризуется, неустойчиво к действию света, щелочей, минеральных кислот, имеет низкую термостойкость. Эти недостатки устраняются с помощью модификации капроновых волокон. Так, например, японская фирма «Toray» ввела на рынок новую нить «quup», гигроскопичность которой в 2 раза больше, чем у обычной полиамидной нити, и почти такая же, как у хлопка. Из таких нитей можно изготавливать колготки, спортивную одежду и нижнее белье.

Области применения полиамидных нитей: одежда, чулочно-носочные изделия, напольные покрытия, технические изделия (шинный корд, технические ткани, сети и канаты, резинотехнические изделия и др.).

Полиакрилонитрильные (ПАН) волокна.

Полиакрилонитрильные материалы известны под наименованиями: в России – нитрон; в США – орлон; в Германии – пан. Полиакрилонитрил получают полимеризацией акрилонитрила: (– СН2– СН – )n

СN

Полиакрилонитрильные волокна обладают хорошими механическими свойствами, высокой светостойкостью; но они мало устойчивы к истиранию, сравнительно жесткие. Штапельное волокно полиакрилонитрила в чистом виде и в смеске с шерстью применяется для выработки пряжи, идущей на изговление костюмных тканей и трикотажа, так как по внешнему виду напоминает шерсть, а комплексные нити, вследствие светостойкости материала, используются для изделий, подвергающихся инсоляции – гардин, рыболовных снастей.

Полиолефиновые волокна

Из группы полиолефинов для производства волокон используют полипропилен –СН2 – СНСНз –nи полиэтилен–СН2– СН2–nсреднего и низкого давления. Они обладают комплексом хороших механических свойств, не изменяются в мокром состоянии, имеют высокую химо- и биостойкость и ряд других особенностей. Исключительной особенностью полипропиленовых волокон (ПП) является их низкая плотность 0,91–0,92 г/см3(не тонут в воде). Недостатки – низкая термостойкость и отсутствие способности поглощать влагу. Полиэтиленовые волокна используются в основном для производства мебельных, обувных, фильтровальных тканей, веревок и шпагатов, электроизоляции. Полипропиленовые волокна используют для технических изделий (упаковочный шпагат, мягкая тара, нетонущие канаты), а также в производстве нетканых материалов, ковров и в смеси с гидрофильными волокнами ( хлопковым, шерстяным, вискозным) в производстве материалов для верхней и спортивной одежды, чулочно-носочных изделий, обуви.

Полиуретановые нити (эластомерные)

Полиуретаны – гетероцепные полимеры, макромолекулы которых содержат уретановую группу (– Н – СОО – ). Отличительная особенность полиуретановых нитей – их высокая эластичность (разрывное удлинение может достигать 800%). При удлинении на 300% доля эластического восстановления (упругой деформации) составляет 92–98%. Полиуретановые нити (торговые названия – лайкра, спандекс) придают текстильным материалам высокую эластичность, упругость, формоустойчивость, несминаемость, устойчивость к истиранию. К недостаткам относятся низкая гигроскопичность (1-1,5%), невысокая прочность, низкая теплостойкость.

Полиуретановые нити используются для изготовления эластичных тканей и трикотажных спортивных и медицинских изделий.

В ТН ВЭД России полиуретановые нити включены в понятие «эластомерные нити», которому дано следующее определение: «Эластомерная нить – комплексная нить, включая мононить, из синтетических текстильных материалов, иная, чем текстурированная объемная нить, которая не разрывается при растяжении в 3 раза по сравнению с ее первоначальной длиной и которая при растяжении в 2 раза по сравнению с первоначальной длиной за период в 5 минут возвращается до длины, не более, чем в 1,5 раза превышающей ее первоначальную длину.