Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
картография.doc
Скачиваний:
234
Добавлен:
03.03.2016
Размер:
4.87 Mб
Скачать

Глава XII. Методы использования карт

Приемы математико-картографического моделирования 229

Разнообразие объектов, изображенных на тематических кар­тах, ведет к определенной дифференциации приемов и показате­лей. Так, в геоморфологии, геологии, геофизике приходится иметь дело главным образом с поверхностями и телами, изображаемы­ми на изолинейных картах. Ландшафтная, почвенная, геоботани­ческая морфометрия чаще всего оперирует с ареалами и качествен­ным фоном, а социально-экономическая морфометрия — преиму­щественно с пунктами и сетями.

12.7. Приемы математико-картографического моделирования

Формализованное картографическое изображение хорошо при­способлено для математического анализа. Как упоминалось выше, каждой точке карты с координатами х и у поставлено в соответ­ствие лишь одно значение картографируемого параметра I, что позволяет представить изображение данного явления как функ­цию т. = Р(х,у). В других случаях картографическое изображение удобно представить как поле случайных величин и воспользовать­ся для его анализа вероятностно-статистическими методами.

В принципе почти все разделы математики применимы для обработки и анализа картографического изображения. Проблема лишь в том, чтобы точно подобрать математическую модель и, главное, дать надежное содержательное истолкование результатам моделирования. Достаточно прочно в картографический анализ вошли некоторые разделы численного анализа, многомерной ста­тистики, теории вероятностей и теории информации.

Аппроксимации. Под аппроксимациями в математике понимают замену (приближение) сложных или неизвестных функций другими, более простыми функциями, свойства которых известны. Любую слож­ную поверхность (поле), изображенную на изолинейной карте, можно аппроксимировать, т.е. приближенно представить в виде

г=/(х,у) + е,

где/(х, у) — некая аппроксимирующая функция, е — остаток, не поддающийся аппроксимации. Функцию /(х, у) можно далее раз­ложить в ряд, представив уравнение поверхности в виде

I =/,(*, У) +/2(х, у) + ... +/„ (х, у) + е, где /^х, у) — компоненты разложения, которые предстоит опреде-

лить. В общем случае для этого с аппроксимируемой карты снимают ряд значений г„ после чего составляют систему уравнений, решае­мых совместно по способу наименьших квадратов, т.е. так, чтобы 2е,2 = 2 [Г(хгу) -/(*,, у)У = тт.

Существуют разные способы аппроксимации. Это обычные ал­гебраические многочлены, ортогональные многочлены Чебышева и Лежандра, которые определенным образом упрощают вычисле­ния, сплайн-функции и др. Не останавливаясь на особенностях математического аппарата, отметим, что во всех случаях задача сводится к тому, чтобы аппроксимирующее уравнение наилучшим образом описывало исходную поверхность, а сумма квадратов от­клонений Ъ е.2 была бы минимальна.

На рис. 12.16 показано последовательное улучшение аппрок­симаций на примере несложных поверхностей. Аппроксимация 1 -го порядка (линейное уравнение) дает плоскость, отражающую только общий уклон поверхности, это очень грубое, слишком общее приближение. Поверхность 2-го порядка уже больше похо­жа на исходную модель, а аппроксимация 3-го порядка (кубичес­кое уравнение) дает достаточно хорошее приближение к исход­ной поверхности.

Тригонометрические функции позволяют описывать сложные, сильно расчлененные поверхности, а сферические функции при­меняют, если при вычислениях нельзя пренебречь кривизной зем­ной поверхности. Аппроксимация с помощью двойных рядов Фу­рье, представленная на рис 12.17, иллюстрирует постепенное ус­ложнение поверхности за счет добавления двухмерных синусоид с разными фазами и амплитудами. Компьютерное моделирование позволяет выполнять подобные аппроксимации для поверхностей любой сложности, вычисляя уравнения высокого порядка, содер­жащие порой несколько десятков членов разложения.

В исследовательской практике аппроксимации используют для аналитического описания поверхностей (полей), изображенных на картах, и выполнения с ними различных действий: суммиро­вания, вычитания, интегрирования и дифференцирования, для подсчета объемов тел, ограниченных этими поверхностями, и ре­шения множества других задач. Одно из направлений использова­ния аппроксимаций — разложение поверхностей на составляю­щие, что позволяет выделять и анализировать нормальные и ано­мальные факторы развития и пространственного размещения явлений (см. разд. 13.2).

230