Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
пед экзамен НФ 2018.doc
Скачиваний:
66
Добавлен:
26.08.2018
Размер:
3.37 Mб
Скачать

12. Современные методы исслед-я ф-й сердца: эхокардиография, магнитно-резонансная томография, радионуклидные методы.

Эхокардиография – ультразвуковой метод обследования, примен-ся ультразвук с частотой > 20000 Гц. Позволяет получить точную гемодинамич кардиологическую инфор-ю. Есть 2-мерная кардиография: различают В-режим и М-режим. М-режим – это -1-й режим, графич изображение движения сердца и створок клапанов во времени. В-режим – это цветное изображение сердца в реальном времени. Доплероэхокардиография – позволяет оценить параметры центральной гемодинамики. Есть чрезпищеводная эхокардиография.

Магнитно-резонансная томография – основана на избирательном поглощении Е протонов. Позволяет получать изображения любых слоев. Противопоказания – любые металлич инородные тела в орг-ме чел-ка (кардиостимулятор) – информация искажается.

13. Принципы опред-я по данным эхокардиографии величин ксо, кдо, уо левого желудочка, значение.

КСО – конечный систолический объем. КДО – конечный диастолический объем. УО – ударный объем – это объем крови, выбрасываемой за 1 сокращ-е, в норме 70-100 мл. Эти показатели нужны для опред-я систолической ф-и левого желудочка (на сколько он сокращается и выбрасывает кровь).

  1. ОПСС, его величина в зависимости от пола и возраста. Методы расчета ОПСС в абсолютных и условных единицах, зависимость МОК от величины ОПСС.

ОПСС зависит от тонуса сосудов мышечного типа, определяющего их радиус, длины сосуда и вязкости протекающей крови. Рассчитать ОПСС можно по формуле: W=p/l, где W – ОПСС в дн/см2, p – среднее АД, I – сердечный индекс. ОПСС может быть выражен также в условных единицах и рассчитан по формуле: W=Ср.АД*пов-ть тела/ДМО, где ДМО – должный минутный объем, который можно рассчитать по формуле: ДМО=должный основн обмен/422. Среднее значение ОПСС для мужчин 19-22 лет составляет 289*104 дн/см2 (36,2 у.е.), для женщин того же возраста – 310*104 дн/см2 (38,8 у.е.). С возрастом ОПСС возрастает и у лиц обоего пола старше 70 лет составляет 380*104 дн/см2 (47,5 у.е.).

  1. Внутрисердечные, внутриклеточные и межклеточные регуляторные механизмы. Внутрисердечные периферические рефлексы.

В каждом миоците действуют механизмы регуляции синтеза белков, обеспечивающих сохранение ее структуры и функций. Скорость синтеза каждого из белков регулируется собственным ауторегуляторным механизмом, поддерживающим уровень воспроизводства данного белка в соответствии с интенсивностью его расходования. При увеличении нагрузки на сердце синтез сократительных белков миокарда усиливается. Появляется т.н. рабочая гипертрофия миокарда. Внутриклеточные механизмы регуляции обеспечивают и изменение интенсивности деят-ти миокарда в соответствии с количеством притекающей к сердцу крови. Этот мех-м получил название «закон Франка-Старлинга»: сила сокращения сердца пропорциональна степени его кровенаполнения в диастолу, т.е. исходной длине его мышечных волокон. Сл-но, чем больше растянута каждая клетка миокарда во время диастолы, тем больше она сможет укоротиться во время систолы. Такой тип миогенной регуляции сократимости миокарда получил название гетерометрической регуляции. Под гомеометрической регуляцией понимают изменение силы сокращений при неменяющейся исходной длине волокон миокарда. В качестве теста на гомеометрическую регуляцию используют пробу Анрепа – резкое увеличение сопротивления выбросу крови из левого желудочка в аорту. Это приводит к увеличению в определенных границах силы сокращений миокарда. Регуляция межклеточных взаимодействий. Установлено, что вставочные диски, соединяющие клетки миокарда, имеют различную структуру. Одни участки вставочных дисков выполняют чисто механич ф-ию, другие обеспечивают транспорт через мембрану кардиомиоцита необходимых ему в-в, третьи – нексусы, или тесные контакты, проводят возбуждение с клетки на клетку. К межклеточным взаимодействиям следует отнести и взаимоотношения кардиомиоцитов с соединительнотканными клетками миокарда. Они поставляют для сократительных клеток миокарда ряд сложных высокомолекулярных продуктов, необходимых для поддержания структуры и функции сократительных клеток. Такой тип наз-ся креаторные связи. Внутрисердечные периферические рефлексы. Более высокий уровень внутриорганной регуляции представлен внутрисердечными рефлексами. В сердце возникают рефлексы, дуга которых замыкается не в ЦНС, а в интрамуральных ганглиях миокарда. В экспериментах показано, что увеличение растяжения миокарда правого предсердия приводит к усилению сокращений левого желудочка. В естественных условиях внутрисердечная нервная система не явл-ся автономной. Она лишь низшее звено в иерархии нервных мех-мов, регулир деят-ть сердца.

  1. Внесердечные регуляторные механизмы. Характер влияния парасимпатической и симпатической нервной системы. Исследования И.П. Павлова. Химическая природа передачи нервных импульсов.

Регуляция осуществляется по блуждающим и симпатическим нервам. Сердечные нервы образованы двумя нейронами. Тела первых нейронов, отростки которых составляют блужд нервы, лежат в продолг мозге. Отростки этих нейронов заканч в интрамуральных ганглиях сердца. Здесь находятся вторые нейроны, отростки которых идут к проводящей системе, миокарду и коронарным сосудам. Первые нейроны симпатических нервов расположены в боковых рогах пяти верхних сегментов грудного отдела спинного мозга. Отростки этих нейронов заканч в шейных и в. Грудных симпатич узлах. В этих узлах наход-ся вторые нейроны, отростки которых идут к сердцу. Влияние на сердце блуждающих нервов описали братья Вебер. Длительное раздражение этих нервов урежает ЧСС вплоть до остановки в диастолу. Это явление называется отрицательный хронотропный эффект. Отрицательный инотропный эффект – уменьшение силы сокращений. Отрицательный батмотропный эффект – понижение возбудимости. Отрицательный дромотропный – замедление проведения возбуждения. Отрицательный клинотропный – падение скорости нарастания давления в фазу изометрического сокращения. При продолжении раздражения блуждаюшего нерва деят-ть сердца восстанавливается (ускользание сердца из-под влияния блуждающего нерва). Влияние симпатических нервов впервые было изучено братьями Цион, а затем Павловым. Братья Цион описали тахикардию при раздражении симпатич нервов (положительный хронотропный). Также наблюдаются положительный инотропный, дромотропный, батмотропный, клинотропный эффекты. Павлов обнаружил нервные волокна, раздражение которых усиливает сокращения без увеличения ЧСС (усиливающий нерв).

Химическая природа передачи нервных импульсов. При раздраж периферических отрезков блужд нерво в их окончаниях выделяется ацетилхолин, а симпатических нервов – норадреналин. Эти в-ва получили название медиаторов. АХ, образ-ся в блужд нерве разрушается быстрее чем норадреналин в симпатическом.

  1. Интеграция механизмов формирования ритма сердца. Представление о «внутрисердечном» и «центральном» генераторах ритма сердца.

Сложившиеся представления о формировании ритма сердца состоят в следующем: ритм сердца рождается в самом органе в его специализированных структурах, облад способностью к автоматизму; автономная нервная система оказывает на ритм корригирующее влияние. Однако в последние годы получены данные, позволяющие критически переосмыслить факты и представления о механизмах формирования ритма сердца. Наряду с существованием внутрисердечного генератора ритма сердца имеется и генератор ритма сердца в ЦНС – в эфферентных структурах сердечного центра продолговатого мозга. Возникающие там нервные сигналы в форме залпов импульсов поступают к сердцу по блуждающим нервам и взаимодействуя с внутрисердечными ритмогенными структурами, вызывают генерацию возбуждения в сердце в точном соответствии с частотой залпов (В.М. Покровский). Таким образом, по функциональному значению сигналы, приходящие из ЦНС, являются пусковыми – каждый залп сопровождается одним сокращением сердца. Совокупность накопленных факторов свидетельствует о существовании наряду с генератором ритма в самом сердце генератора ритма в ЦНС. Внутрисердечный генератор является фактором жизнеобеспечения, сохраняя насосную функцию тогда, когда ЦНС находится в состоянии глубокого торможения. Центральный генератор организует адаптивные реакции сердца в естественных регуляторных реакциях организма.

  1. Рефлекторная регуляция деат-ти сердца.