Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
лекции / lekcii_teoriya_avtomaticheskogo_upravleniya.doc
Скачиваний:
281
Добавлен:
22.02.2014
Размер:
4.56 Mб
Скачать

Переходные характеристики h(t) и (t) называют временными.

Зная переходную или весовую функцию САУ, можно определить реакцию системы на произвольное входное воздействие при ННУ с помощью следующих формул:

Две рассмотренные формулы легко получаются друг из друга, являясь вариантами интеграла Дюамеля, или интеграла свертки. Для реальных инерционных звеньев реакция на выходе всегда отстает от входного воздействия, т.е. .

Формы записи линейных дифференциальных уравнений.

Передаточные функции

При описании САУ в виде дифференциального уравнения, устанавливающего связь между входной и выходной величинами как в переходных, так и в установившихся режимах:

где - входные величины элемента

- выходная величина элемента

- коэффициенты уравнения, наз. параметрами

можно применить символическую (операторную) форму записи. Переход к этой форме осуществляют введением сокращенного условного обозначения операции дифференцирования:. Соответственнок-тую производную обозначают

Тогда исходное уравнение можно записать в виде:

или:

Введем обозначения:

- дифференциальный оператор при выходной величине, наз. собственным, или характеристическим оператором. Название обусловлено тем, что многочлен характеризует собственное движение элемента, т.е. движение при отсутствии внешних воздействий.

- дифференциальные операторы при входных

величинах, наз. операторами воздействия,

операторами входа.

Тогда

Другая применяемая форма записи дифференциальных уравнений основана на применении преобразования Лапласа. Применим преобразование Лапласа к дифференциальному уравнению, считая, что до приложения внешнего воздействия система находилась в покое и все начальные условия равны нулю. Получим:

Сравнивая с уравнением в символической форме, замечаем их полную аналогию. Разница только в значении символа р: в одном случае это операция дифференцирования, в другом – комплексное число.

Передаточной функцией w(p) называют отношение изображения выходной величины к изображению входной величины при нулевых начальных условиях:

Передаточная функция также равна отношению входного оператора к собственному оператору:

Как видно, передаточная функция представляет собой некоторый динамический оператор, характеризующий прохождение сигналов через линейный элемент.

Физического смысла у передаточной функции нет.

Часто рассматривают передаточную функцию по управлению

и передаточную функцию по возмущению

Рассмотрим основные свойства и особенности передаточных функций.

Передаточная функция элемента связана с его импульсной переходной функцией преобразованием Лапласа:

Учитывая связь между функцией веса и переходной функцией, запишем связь между переходной функцией и передаточной функцией:

Для реальных элементов, описываемых обыкновенными дифференциальными уравнениями, передаточная функция представляет собой правильную рациональную дробь

у которой степень многочлена числителя меньше или равна степени многочлена знаменателя, т.е. . Все коэффициенты передаточной функции – действительные числа, характеризующие параметры элемента.

Для элементов, описываемых передаточной функцией невысокого порядка

(n < 3), принято записывать передаточную функцию в стандартной форме. При этом передаточную функцию преобразовывают таким образом, чтобы свободный член знаменателя был равен единице. При этом свободный член числителястановится равным передаточному коэффициенту и его выносят за скобки:, где

Передаточная функция является функцией комплексной переменной, которая может при некоторых значениях переменнойр обращаться в ноль или бесконечность. Значение переменной р, при котором передаточная функция обращается в ноль, называют нулём, а значение, при котором обращается в бесконечность – полюсом передаточной функции. Очевидно, что нулями передаточной функции являются корни полинома , а полюсами - корни полинома.

Свойства преобразования Лапласа

Операционное исчисление – совокупность методов прикладного математического анализа, позволяющих экономными и непосредственно ведущими к цели средствами получать решения линейных дифференциальных уравнений, а также разностных.

Сущность метода. Пусть задана некоторая функция , действительной переменной, причем такая, что для нее существует преобразование Лапласа (-преобразование):

где - оригинал

- изображение

- комплексная переменная.

Свойство линейности.

Свойство дифференцирования и интегрирования оригинала.

где

Обратное преобразование Лапласа.