Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
методичка по физике.DOC
Скачиваний:
15
Добавлен:
23.12.2018
Размер:
3.19 Mб
Скачать

Обработка результатов прямых измерений

Обычно в реальных измерениях присутствуют и случайные и систематические (аппаратурные) погрешности. Если вычисленная случайная погрешность прямых измерений равна нулю или меньше аппаратурной в два и большее число раз, то при вычислении погрешности косвенных измерений в расчет должна приниматься аппаратурная погрешность. Если эти погрешности отличаются меньше, чем в два раза, то абсолютная погрешность вычисляется по формуле

(1)

Случайная погрешность измерения обычно неизвестна, как неизвестно и истинное значение измеряемой величины. Поэтому задача элементарной обработки результатов измерений заключается в установлении интервала, внутри которого с заданной вероятностью находится истинное значение измеряемой физической величины.

Пусть в результате прямых измерений физической величины получен ряд ее значений: x1, x2, ..., xn.

Зная этот ряд чисел, нужно указать значение, наиболее близкое к истинному значению измеряемой величины, и найти величину случайной погрешности. Эту задачу решают на основе теории вероятностей, подробное изложение которой выходит за рамки нашего курса.

Наиболее вероятным значением измеряемой физической величины (близким к истинному) считают среднее арифметическое

(2)

Здесь xi - результат i-го измерения, n - число измерений. В случае малого n правильная оценка погрешности основана на использовании распределения Стьюдента (t – распределения). Случайная ошибка измерения может быть оценена величиной случайной абсолютной погрешности Dxсл., которую вычисляют по формуле

(3)

где t(a, n) - коэффициент Стьюдента, зависящий от числа измерений n и доверительной вероятности a. Значение доверительной вероятности a задает сам экспериментатор.

Вероятностью случайного события называется отношение числа случаев, благоприятных для данного события, к общему числу равновозможных случаев. Вероятность достоверного события равна 1, а невозможного - 0.

Значение коэффициента Стьюдента, соответствующее заданной доверительной вероятности a и определенному числу измерений n, находят по табл. 1.

Из таблицы видно, что величина коэффициента Стьюдента и случайная погрешность измерения тем меньше, чем больше n и меньше a. Практически выбирают a = 0,95. Однако простое увеличение числа измерений не может свести общую погрешность к нулю, так как любой измерительный прибор дает погрешность.

Таблица 1

Число

Доверительная вероятность a

измерений n

0,6

0,7

0,95

0,98

2

1,38

2,0

12,7

31,8

3

1,06

1,3

4,3

7,0

4

0,98

1,3

3,2

4,5

5

0,94

1,2

2,8

3,7

6

0,92

1,2

2,6

3,4

7

0,90

1,1

2,4

3,1

8

0,90

1,1

2,4

3,0

9

0,90

1,1

2,3

2,9

10

0,88

1,1

2,3

2,8

11

0,84

1,0

2,0

2,3

Поясним смысл терминов абсолютная погрешность Dx и доверительная вероятность a, используя числовую ось. Пусть среднее значение измеряемой величины <x> (рис. 1), а вычисленная абсолютная погрешность Dx. Отложим Dx от <x> справа и слева. Полученный числовой интервал от (<x> ─ Δx) до (<x> + Dx) называется доверительным интервалом. Внутри этого доверительного интервала находится истинное значение измеряемой величины x.

Рис. 1

Если измерения той же величины повторить теми же приборами в тех же условиях, то истинное значение измеряемой величины xист. попадет в этот же доверительный интервал, но попадание будет не достоверным, а с вероятностью a.

Вычислив величину абсолютной погрешности Dx по формуле (1), истинное значение x измеряемой физической величины можно записать в виде x = <x> ± Dx.

Величина абсолютной погрешности Δx результата измерений еще не определяет точности измерений. Для оценки точности измерения физической величины подсчитывают относительную погрешность, которую обычно выражают в процентах:

(4)

За меру точности измерения принимают величину 1/ε. Следовательно, чем меньше относительная погрешность ε, тем выше точность измерений.

Таким образом, при обработке результатов прямых измерений необходимо проделать следующее:

1. Провести измерения n раз (обычно 5).

2. Вычислить среднее арифметическое значение <x> по формуле (2).

3. Задать доверительную вероятность a (обычно берут a = 0,95).

4. По табл. 1 найти коэффициент Стьюдента, соответствующий заданной доверительной вероятности a и числу измерений n.

5. Вычислить абсолютную погрешность по формуле (3) и сравнить ее с аппаратурной погрешностью. Для дальнейших вычислений взять ту из них, которая больше (см. пример на с. 8).

6. По формуле (4) вычислить относительную ошибку e.

7. Записать окончательный результат

x = <x> ± Dx

с указанием относительной погрешности e и доверительной вероятности a.

Обычно кроме прямых измерений в лабораторной работе присутствуют косвенные измерения.