Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
СИНТЕЗ ЦИФРОВЫХ ФИЛЬТРОВ С ИСПОЛЬЗОВАНИЕМ ПАКЕТА ПРОГРАММ MATLAB.DOC
Скачиваний:
140
Добавлен:
01.05.2014
Размер:
1.41 Mб
Скачать

3.1.3. Эллиптические фильтры

Эллиптические фильтры характеризуются тем, что их амплитудная характеристика имеет равновеликие пульсации и в полосе пропускания, и в полосе непропускания. Эллиптические фильтры являются оптимальными с точки зрения минимальной ширины переходной полосы.

Квадрат амплитудной характеристики эллиптического фильтра нижних частот записывается в виде

,

где – рациональная функция Чебышева;L параметр, характеризующий пульсации функции .

3.1.4. Фильтры Бесселя

Фильтры Бесселя характеризуются максимально гладкой характеристикой групповой задержки в начале координат в s-плоскости. Переходная характеристика фильтров Бесселя имеет весьма малый выброс. Однако при дискретизации непрерывных фильтров Бесселя методами, рассмотренными далее, характерное для этих фильтров свойство максимальной гладкости характеристики групповой задержки не сохраняется.

Передаточная функция фильтров Бесселя записывается в виде

где B0 (S) – функция Бесселя n-го порядка; d0 – константа нормирования;

Функции Бесселя удовлетворяют следующему рекуррентному соотношению:

с начальными условиями B0(S) = 1 и B0(S) = S + 1. Эти функции можно представить в виде

где k = 1, 2, ...,n.

Фильтры Бесселя имеют только полюсы, которые расположены на окружности с центром на действительной положительной полуоси s-плоскости.

3.2. Методы дискретизации аналогового фильтра

Предположим, что передаточная функция аналогового фильтра (представляющая собой преобразование Лапласа от импульсной характеристики) равна:

, (3.1)

причем коэффициенты aiиbi(илиciиdi) известны.

Наиболее распространенными методами дискретизации аналогового фильтра с передаточной функцией (3.1) являются следующие:

  • метод отображения дифференциалов;

  • метод инвариантного преобразования импульсной характеристики;

  • метод билинейного преобразования;

  • метод согласованного z-преобразования.

Рассмотрим некоторые из них.

3.2.1. Метод инвариантного преобразования импульсной характеристики

Отличительной особенностью этого метода является то, что в качестве импульсной характеристики рассчитываемого цифрового фильтра используется дискретная импульсная характеристика соответствующего аналогового фильтра. В результате частотная характеристика цифрового фильтра образуется наложением частотной характеристики дискретизуемого аналогового фильтра.

Разложим выражение (3.1) на простые дроби:

где , причем каждый коэффициентdi определяет положение i-го полюса. При записи разложения (3.1) предполагалось, что порядок числителя M меньше порядка знаменателя N и все полюсы H(S) простые. Импульсная характеристика h(t) аналогового фильтра с передаточной функцией вида (3.1) описывается соотношением

.

Дискретизуя ее, получим импульсную характеристику цифрового фильтра

,

где T – период дискретизации. Найдем ее z-преобразование:

.

Изменив порядок суммирования и просуммировав по n, получим:

(3.2)

Сравним формулы (3.1) и (3.2). Видно, что для простых полюсов переход от H(S) к H(z) осуществляется с помощью отображения, при котором используется замена

.

Если полюсы dj комплексные, то остатки cj в (3.1) также будут комплексными. Функция h(t) действительная, поэтому должны существовать также комплексно сопряженные полюс и остаток. Просуммируем эти комплексно сопряженные члены:

.

Примем di = si + Wi и ci = gi + jhi, тогда

. (3.3)

Использование отображающей замены применительно к каждому слагаемому в формуле (3.2) дает

(3.4)

Из формул (3.3) и (3.4) получаем:

(индекс iздесь опущен, а числители разделены на 2g).

Частотная характеристика цифрового фильтра, рассчитываемого методом инвариантного преобразования импульсной характеристики, образуется путем наложения частотной характеристики дискретизуемого аналогового фильтра. Таким образом, можно записать:

где – угловая частота дискретизации цифрового фильтра. На рис. 3.2 показано соответствующее инвариантному преобразованию импульсной характеристики отображение из s-плоскости в z-плоскость. Каждая горизонтальная полоса шириной изs-плоскости отображается на z-плоскость. Поэтому все смежные полосы из s-плоскости будут при отображении накладываться друг на друга в z-плоскости.

Рис. 3.2

Значит, для того чтобы частотные характеристики исходного аналогового фильтра и рассчитываемого методом инвариантного преобразования импульсной характеристики цифрового фильтра соответствовали друг другу, необходимо, чтобы полоса пропускания аналогового фильтра находилась в пределах диапазона .

Для выполнения этого условия необходимо до начала преобразования вводить дополнительный фильтр нижних частот, гарантирующий соответствующее ограничение полосы пропускания аналогового фильтра.

Метод инвариантного преобразования импульсной характеристики дает хорошие результаты для баттервортовских, бесселевых или чебышевских фильтров нижних частот и полосовых фильтров. Достоинство этого метода заключается в сохранении в цифровом фильтре таких же фазовой характеристики и характеристики затухания, как и у исходного аналогового фильтра.

Калькулятор

Сервис бесплатной оценки стоимости работы

  1. Заполните заявку. Специалисты рассчитают стоимость вашей работы
  2. Расчет стоимости придет на почту и по СМС

Нажимая на кнопку, вы соглашаетесь с политикой конфиденциальности и на обработку персональных данных.

Номер вашей заявки

Прямо сейчас на почту придет автоматическое письмо-подтверждение с информацией о заявке.

Оформить еще одну заявку