Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
15-32_1.docx
Скачиваний:
9
Добавлен:
24.09.2019
Размер:
1.04 Mб
Скачать

2) Физические процессы обработки материалов давлением.

Для правильного выбора машин, проектирования технологи­ческих процессов и рациональной геометрии инструмента необ­ходимо знание физико-механических основ обработки давлением. Обработка давлением основана на пластичности материалов, т. е. их способности получать пластические деформации. Как упругие, так и пластические деформации осуществляются в твердых телах в результате относительного смещения атомов. При упругих деформациях смещения атомов из положений равновесия неболь­шие и они увеличиваются пропорционально увеличению сил, вызвавших это смещение (закон Гука). С ростом величины упругих деформаций потенциальная энергия твердого тела возрастает до определенного предела, после чего атомы смещаются на рассто­яния, больше межатомных, и остаются в новых положениях устойчивого равновесия. Сумма таких смещений создает пласти­ческую деформацию или же остаточное изменение формы и разме­ров твердого тела в результате действия внешних сил.

Величину формоизменения оценивают степенью деформации ε. Силы взаимосвязи атомов противостоят действию внешних сил, и поэтому твердое тело оказывает сопротивление деформированию. Последнее характеризуют величиной удельного усилия (напря­жения σ), вызывающего пластическую деформацию при данных условиях деформирования. Напряжения и деформации в объеме деформируемого тела рас­пределены неравномерно. Напряжения на поверхностях контакта можно рассчитать методами, известными из теории обработки да­влением. Если нормальное напряжение σи (направленное перпен­дикулярно к контактной поверхности) постоянно по всей поверх­ности контакта заготовки 1 с инструментом 2 (рис. 20, а) или заменено его средней величиной σср в случае неравномерного рас­пределения σн по контактной поверхности, то дефор­мирующее усилие Р = σF или Р = σcpF, где F — площадь проекции контактной поверхности на плоскость, перпендикуляр­ную к направлению деформирующего усилия. Определение де­формирующего усилия требуется для выбора машин для обра­ботки давлением и для расчета инструмента на прочность.

Сопротивление деформированию и пластичность металла зави­сят от его химического состава, температуры, скорости деформации и схемы нагружения. Так, с повышением содержания углерода и легирующих элементов в стали ее пластичность понижается, а сопротивление деформированию растет. Повышение температуры приводит к увеличению пластичности металла и снижению его сопротивления деформированию, что часто используют, применяя нагрев заготовок перед обработкой давлением. Повышение ско­рости деформации (изменение степени деформации в единицу вре­мени) снижает пластичность и увеличивает сопротивление де­формированию, однако при очень высоких скоростях (например, при электромагнитной и взрывной штамповке) для многих метал­лов допустимы чрезвычайно большие степени деформации без разрушения. Схема нагружения, создающая всестороннее не­равномерное сжатие заготовки, способствует повышению пластич­ности металла и его сопротивления деформированию. Поэтому, например, в процессах прессования металл проявляет большую способность к пластической деформации, чем при волочении.

Пластичность, а, следовательно, и технологические возмож­ности обработки давлением, следует рассматривать не как неизмен­ное свойство какого-либо материала, а как его состояние, завися­щее от условий обработки. Следует создавать комплекс условий (мелкозернистая структура металла, соответствующие темпера­тура и скорость деформации), в которых некоторые металлы переходят в состояние сверхпластичности.

Процессы обработки давлением в состоянии сверхпластичности, позволяют осуществлять огромные деформации металлов и сплавов при пониженном сопротивлении их деформированию. При этом несколько технологических операций совмещают в одной операции и для обработки давлением используют менее мощное оборудова­ние. Дальнейшее совершенствование технологии обработки давле­нием базируется на глубоком изучении природы пластической деформации.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]