Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Механические характеристики материалов.docx
Скачиваний:
11
Добавлен:
25.09.2019
Размер:
469.27 Кб
Скачать

Напряжения

При определении внутренних силовых факторов их считают приложенными в центре тяжести сечения. В действительности внутренние силы, являясь результатом взаимодействия частиц тела, непрерывно распределены по сечению. Интенсивность этих сил в разных точках сечения может быть различной. При увеличении нагрузки на элемент конструкции увеличиваются внутренние силы и соответственно увеличивается их интенсивность во всех точках сечения.. Меру интенсивности внутренних сил называют напряжением. Совокуп­ность напряжений для множества площадок, проходящих через данную точку, образует напряженное состояние в этой точке.

Напряжения в поперечных сечениях связаны с внутренними силовыми факторами определенными зависимостями.

В соответствии с теоремой Вариньона, известной из теоретической механики, и зависимостью между напряжениями   и  , выражение для   можно записать в виде

,

где

.

  1. Реальный объект и расчетная схема. Основные гипотезы сопртивления материалов.

В сопротивлении материалов, как и во всякой отрасли естест­вознания, исследование вопроса о прочности или жесткости ре­ального объекта начинается с выбора расчетной схемы. 

Расчетная схема конструкции  его упрощенная схема, освобожденная от не­существенных в данной задаче особенностей. Сопротивление материалов принято рассматривать материалы как однородную сплошную среду не зависимо от их структуры. Под однородностью понимают независимость ее свойств от величины выделенного на тело объема. С понятием однородности тесно связано понятие сплошности среды, то есть под которым подразумевается тот факт что материал конструкции полностью заполнен.

Под действием внешних сил реальное тело меняет свои геометрические размеры. После снятие нагрузки геометрические размеры полностью или частично восстанавливаются.

При выборе расчетной схемы вводятся упрощения в геомет­рию реального объекта. Основным упрощающим приемом в сопро­тивлении материалов является приведение геометрической формы тела к схемам бруса, оболочки или пластины. Как известно, любое тело в пространстве характеризуется тремя измерениями. Брусом называется геометрический объект, одно из измерений которого (длина) много больше двух других.

Гипотеза о сплошности материала. Предполагается, что материал сплошь заполняет форму тела. Атомическая теория дискретного состояния вещества во внимание не принимается.

Гипотеза об однородности и изотропности. В любом объеме и в любом направлении свойства материала считаются одинаковыми. В некоторых случаях предположение об изотропии неприемлемо. Например, свойства древесины вдоль и поперек волокон существенно различны.

. Гипотеза о малости деформации. Предполагается, что деформации малы по сравнению с размерами тела. Это позволяет составлять уравнения статики для недеформированного тела. 

. Гипотеза об идеальной упругости материала. Все тела предполагаются абсолютно упругими. 

  1. Осевое растяжение – сжатие. Внутренние силы напряжения

 

Под растяжением (сжатием) понимают такой вид нагружения, при котором в поперечных сечениях стержня возникают только продольные силы  , а прочие силовые факторы равны нулю.

Осевым растяжением бруса называется вид нагружения, при котором равнодействующая внешних сил прикладывается в центре тяжести поперечного сечения и действует вдоль продольной оси.

Продольная сила – внутреннее усилие, равное сумме проекций всех внешних сил, взятых с одной стороны от сечения, на ось стержня.

Рассмотрим однородный прямолинейный стержень длиной и площадью поперечного сечения А, на двух концах которого прило­жены две равные по величине и противоположно направленные центральные продольные силы Р

Поместим начало плоской системы координат yz в центре тяжести левого сечения, а ось  направим вдоль продольной оси стержня.

Для определения величин внутренних усилий воспользуемся методом сечений. Задавая некоторое сечение на расстояние z ( ) от начала системы координат и рассматривая равновесие левой относительно заданного сечения части стержня

рмальная сила   приложена в центре тяжести сечения, яв­ляется равнодействующей внутренних сил в сечении и, в соответст­вии с этим, определяется следующим образом:

.

Но из этой формулы нельзя найти закон распределения нор­мальных   напряжений в поперечных сечениях стержня. Для этого обратимся к анализу характера его деформирования.

Если на боковую поверхность этого стержня нанести прямо­угольную сетку (рис. 2.2, б), то после нагружения поперечные ли­нии а-а, b-b и т.д. переместятся параллельно самим себе, откуда следует, что все поверхностные продольные волокна удлинятся одинаково. Если предположить также, что и внутренние волокна работают таким же образом, то можно сделать вывод о том, что по­перечные сечения в центрально растянутом стержне смещаются параллельно начальным положениям, что соответствует гипотезе плоских сечений (гипотезе Бернулли).

Значит, все продольные волокна стержня находятся в одина­ковых условиях, а следовательно, нормальные напряжения во всех точках поперечного сечения должны быть также одинаковы и рав­ны

,  

В сечениях, близких к месту приложения внешних сил, гипотеза Бернулли нарушается: сечения искривляются, и напряжения в них распределяются неравномерно. По мере удаления от сечений, в которых приложены силы,напряжения выравниваются, и в сечениях, удаленных от места приложения сил на расстояние, равное наибольшему из размеров поперечного сечения, напряжения можно считать распределенными по сечению равномерно. Это положение, называемое принципом Сен-Венана, позволяет при определении напряжений в сечениях, достаточно удаленных от мест приложения внешних сил, не учитывать способ их приложения, заменять систему внешних сил статически эквивалентной системой