Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Механические характеристики материалов.docx
Скачиваний:
11
Добавлен:
25.09.2019
Размер:
469.27 Кб
Скачать
  1. Сдвиг. Расчеты. Примеры

Сдвигом называют деформацию, представляющую собой искажение первоначально прямого угла малого элемента бруса (рис.5.14) под действием касательных напряжений  . Развитие этой деформации приводит к разрушению, называемому срезом или, применительно к древесине, скалыванием. Примером сдвига является резка полосы ножницами. На сдвиг работают жесткие соединения конструкций – сварные, заклепочные и так далее.

 

Деформация сдвига оценивается взаимным смещением   граней 1  1 и 2  2 малого элемента (рис. 5.15), называемым абсолютным сдвигом и более полно – относительным сдвигом (углом сдвига) 

,                                      (5.19)

являющимся безразмерной величиной.

      

В предположении равномерного распределения касательных напряжений по сечению площадью А, они определяются по формуле

,                                                 (5.20)

где Q – поперечная сила в данном сечении.

Условие прочности записывается по минимальной площади среза Smin, отражающей минимальное число соединяющих элементов (заклепок, болтов, штифтов и т.д.) или минимальную длину сварного шва.

Величина допускаемых напряжений   зависит от свойств материала, характера нагрузки и может быть определена по 3-ей теории прочности:  , а так как при чистом сдвиге   , то

,                      (5.21)

При расчете болтовых или заклепочных соединений учитывается смятие контактирующих поверхностей, то есть пластическую деформацию, возникающую на поверхности контакта.

,

где Aсм – площадь проекции поверхности контакта на диаметральную плоскость.

При выполнении проектного расчета, то есть при определении необходимого диаметра заклепки, болта или при определении их количества необходимо учитывать условие прочности на срез и на смятие, из двух значений следует взять большее число, округлив его до ближайшего целого в меньшую сторону.

Примечания: 1. Так как болты и заклепки ослабляют соединяемые листы, последние проверяют на разрыв в ослабленных сечениях

.

При расчетах сварных швов наплывы не учитывают, а считают, что в разрезе угловой шов имеет форму прямоугольного равнобедренного треугольника и разрушение шва происходит по его минимальному сечению, высота которого

,

где  – минимальная толщина соединяемых листов.

В пределах упругости касательное напряжение прямо пропорционально относительному сдвигу

                                               (5.22)

– это закон Гука при сдвигеG – модуль сдвига, Н/м2, характеризующий жесткость материала при сдвиге.

Закон Гука при сдвиге через абсолютные деформации:

,                                    (5.23)

где а – расстояние между сдвигаемыми гранями; А – площадь грани.

Модуль сдвига G, модуль продольной упругости Е и коэффициент Пуассона   материала связаны зависимостью

Удельная потенциальная энергия деформации сдвига равна

На практике чаще всего теория сдвига применяется к расчету болтов, заклепок, шпонок, сварных швов и других элементов соединений.

 

  1. Геометрические характеристики поперечных сечений стержня

Простейшими видами напряженного состояния стержневых элементов конструкции являются: растяжение, кручение и изгиб. Основные расчетные формулы для определения напряжений и деформаций:

Растяжение

Кручение**

Изгиб***

* - N. Мк, Е, F, G, lз не изменяются вдоль оси стержня,

** - кручение стержней круглого поперечного сечения,

*** - прямой изгиб.

Правые части формул для расчета напряжений имеют идентичную структуру в виде дроби При этом в числителе стоят внутренние силовые факторы, а в знаменателе - геометрические характеристики поперечных сечений:

F - площадь поперечного сечения, Wp и Wx - полярный и осевой моменты сопротивления сечения.

При расчете деформаций в знаменателях формул также присутствуют геометрические характеристики сечений, например, lp и lx - полярный и осевой моменты инерции сечения.

Задача цасчета этих величин осложняется тем, что все моменты сопротивления и моменты инерции сечений следует определять относительно главных центральных осей сечения. Следовательно, начинать расчет надо с определения координат центра тяжести сечения и выяснения какая пара осей, проходящая через него является главной.

При расчетах на устойчивость также будут встречаться геометрические характеристики сечений, а именно минимальный момент инерции.

Информацию о распределении внутренних силовых факторов в поперечных сечениях стержня вдоль его продольной оси при заданном нагружении обычно получают на основании соответствующих эпюр для продольных и поперечных сил, изгибающих и крутящих моментов.

Значения геометрических характеристик сечений могут быть получены двумя способами:

  • с помощью таблиц для профилей поперечных сечений стержней, принадлежащих к стандартному ряду промышленных изделий типа "уголок", "швеллер", "двутавр" и т.п.,

  • расчетным путем, исходя из конструктивных параметров для сечений нестандартного профиля или для составных сечений в виде комбинации сечений из числа стандартных профилей.

Простейшей характеристикой прочности и жесткости стержня, зависящей от формы и размеров поперечного сечения, является F - площадь поперечного сечения. Но эта величина используется непосредственно в расчетах лишь при равномерном распределении напряжений по поперечному сечению, т.е при растяжении или сжатии стержня.

При кручении и изгибе напряжения в сечении распределены неравномерно. Поэтому в расчетные формулы для напряжений входят не только геометрические характеристики сечения, но и дополнительные геометрические параметры, указывающие расположение тех точек сечения, где напряжения будут экстремальными при данном виде нагружения.

Рассмотримм это на примере стержня квадратного поперечного сечения, испытывающего деформацию изгиба (рис. 4.1,а).

Если высоту сть,.:кня увеличить вдвое, а ширину - уменьшить вдвое (рис. 4.1,6), то площадь поперечного сечения не изменится Деформация же свободного конца стержня в этом случае уменьшится по сравнению с исходным вариантом в 4 раза, а для разрушения стержня понадобится сила вдвое большая (по отношению к исходному варианту).

Если теперь повернуть стержень на 90° (рис. 4.1,в), то деформация его увеличится по сравнению с исходным вариантом (рис. 4.1,а) в 4 раза, а разрушающая сила уменьшится вдвое.

Вполне логичным представляется предположение о том, что уменьшение площади поперечного сечения уменьшает прочность стержня. Однако в ряде случаев удаление части материала стержня увеличивает его прочность.