Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Механические характеристики материалов.docx
Скачиваний:
11
Добавлен:
25.09.2019
Размер:
469.27 Кб
Скачать

27 Косой изгиб

Косой изгиб - изгиб, при котором нагрузки действуют в одной плоскости, не совпадающей с главными плоскостями инерции.

Если все нагрузки, вызывающие изгиб, действуют в одной плоскости, не совпадающей ни с одной из главных плоскостей, то изгиб называется косым (рис. 2.6.2)

Рис. 2.6.2

Как в случае плоского, так и в случае косого изгиба, наиболее удобно приводить изгиб к двум плоским. Для этого нагрузки, действующие в произвольных силовых плоскостях, нужно разложить на составляющие, расположенные в главных плоскостях   и  , где   и   - главные оси инерции сечения.

При расчете на прочность при сложном изгибе обычно пренебрегают влиянием касательных напряжений, поэтому в сечении определяют только изгибающие моменты   и  .

Пусть в произвольном сечении действуют изгибающие моменты   и   (рис. 2.6.3, а). Вычислим напряжения в некоторой точке с координатами   и   произвольного поперечного сечения. Изгибающие моменты будем считать положительными, если они вызывают в точках первого квадранта растягивающие напряжения.

Нормальное напряжение в точке от действия изгибающего момента  :

Нормальное напряжение в точке от действия изгибающего момента  :

Рис. 2.6.3

Исходя из принципа суперпозиций нормальное напряжение в точке от действия обоих изгибающих моментов

 (2.6.1)

Формула (2.6.1) позволяет определить нормальные напряжения в любой точке поперечного сечения при сложном изгибе.

Уравнение нейтральной линии при сложном изгибе в любом поперечном сечении получим, приравнивая выражение (2.6.1) к нулю и выражая координаты точек нейтральной линии через   и   (рис. 2.6.3, б).

 (2.6.2)

Очевидно, что это уравнение представляет собой уравнение прямой, проходящей через начало координат (центр тяжести сечения). Положение нейтральной линии характеризуется ее угловым коэффициентом

 (2.6.3)

Проверку прочности при сложном изгибе следует проводить в тех сечениях, где изгибающие моменты   и  одновременно велики. Таких сечений в общем случае сложного изгиба может быть несколько.

Если опасное сечение известно, то в нем нужно отыскать опасные точки. Опасными при сложном изгибе будут являться точки наиболее удаленные от нейтральной линии.

В общем случае сложного изгиба условие прочности принимает вид

 (2.6.4)

Подбор сечений при сложном изгибе – задача более сложная, чем при простом плоском изгибе. При ее решении необходимо сначала задаться отношением моментов сопротивлений и находить сечения методом подбора.

Перемещения при сложном изгибе определяют также исходя из принципа независимости действия сил

 (2.6.5)

где   перемещение в плоскости  , а   - в плоскости  .

28.Внецентренное растяжение и сжатие.

Вторым практически важным случаем сложения деформаций от изгиба и от продольных сил является так называемое внецентренное сжатие или растяжение, вызываемое одними продольными силами. Этот вид нагружениядовольно распространен в технике, так как в реальной ситуации почти невозможно приложить растягивающую нагрузку точно в центре тяжести.

Внецентренным растяжением-сжатием называется случай, когда равнодействующая сил, приложенных к отброшенной части стержня, направлена параллельно оси стержня, но не совпадает с этой осью

Внецентренное растяжение (сжатие) испытывают короткие стержни. Все сечения являются равноопасными, поэтому нет необходимости в построении эпюр внутренних силовых факторов.

Представим, что после проведения разреза равнодействующая Р сил действующих на отброшенную часть и приложенная к оставшейся проходит через точку с координатами (xpyp) в главных центральных осях поперечного сечения (рис. 7.18).

Для вычисления нормального напряжения в поперечном сечении в окрестности точки с произвольными координатами  воспользуемся принципом независимости действия сил. Будем вычислять нормальное напряжение от каждого внутреннего силового фактора в отдельности и результат сложим.

                                                          (2)

По этой формуле можно вычислять нормальные напряжения в точках поперечного сечения стержня при совместном действии осевой силы и двух изгибающих моментов. В нашем случае все три внутренних силовых фактора зависят от внецентренно приложенной силы Р (рис.7.19). Подставив соответствующие выражения в (2), получим

                                                 

Вынесем величину нормального напряжения при осевом растяжении   за скобки

Введем понятие о радиусе инерции относительно оси U

 -                                                                       

это такое расстояние от оси U до условной точки, где сосредоточена вся площадь сечения. Тогда момент инерции можно найти по формуле

                                                                                                         (3)

Применив (3) в выражении  , получим