Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
В.Д. Боев, Р.П. Сыпченко.docx
Скачиваний:
179
Добавлен:
19.09.2019
Размер:
7.07 Mб
Скачать

6.3. Решение прямой и обратной задач в системе моделирования

При имитационном моделировании с использованием специальных инструментальных средств, например, GPSS World, в общем случае решаются две задачи. Назовем их прямой и обратной.

Прямая задача заключается в нахождении оценки математического ожидания какого-либо параметра моделируемой системы при заданном времени ее функционирования.

Обратная задача состоит в определении оценки математического ожидания времени функционирования моделируемой системы, за которое какой-либо ее показатель достигает заданного значения.

Решение этих задач, особенно обратной задачи, имеет свои особенности. Рассмотрим эти особенности на примере.

6.3.1. Постановка прямой и обратной задач

Пример 6.1. Сервер обрабатывает запросы, поступающие с автоматизированных рабочих мест (АРМ) с интервалами, распределенными по показательному закону со средним значением T1= 2 мин. Вычислительная сложность запросов распределена по нормальному закону с математическим ожиданием S1 = 6 x 107 оп и среднеквадратическим отклонением S2 = 2*105 Производительность сервера Q = 6*105 оп /c. В случае занятости сервера поступающий запрос теряется.

Сервер представляет собой однофазную систему массового обслуживания разомкнутого типа с отказами.

Прямая задача.Построить имитационную модель для определения оценки математического ожидания количества запросов (дальше - количества запросов), обработанных сервером за время функционирования T = 1 час, и оценки математического ожидания вероятности обработки запросов (дальше - вероятности обработки запросов).

Обратная задача.Построить имитационную модель для определения оценки математического ожидания времени (дальше - времени обработки), за которое будет обработано сервером N запросов, и оценки математического ожидания вероятности обработки запросов.

6.3.2. Решение прямой задачи

Рассчитаем количество прогонов, которые нужно выполнить в каждом наблюдении, т. е. проведем так называемое тактическое планирование эксперимента. Пусть результаты моделирования (вероятность обработки запросов) нужно получить с доверительной вероятностью   и точностью  . Расчет проведем для худшего случая, т. е. при вероятности   так как до эксперимента   неизвестно:

В модели для имитации источника запросов следует использовать блок GENERATE, для имитации сервера как одноканального устройства - блоки SEIZE и RELEASE, для имитации обработки запросов - блок ADVANCE.

В модели должны быть следующие элементы:

  • задание исходных данных;

  • описание арифметических выражений;

  • сегмент имитации поступления и обработки запросов;

  • сегмент задания времени моделирования и расчета результатов моделирования.

Серверу дадим имя Server. Для вывода из модели транзактов, имитирующих обработанные и потерянные запросы, используем блоки TERMINATE с метками ObrZap и PotZapсоответственно. Для счета количества всех запросов используем метку KolZap.

6.3.2.1. Блок-диаграмма модели

Построим блок-диаграмму модели для решения прямой задачи, т. е. сегмент имитации поступления и обработки запросов и сегмент задания времени моделирования и расчета результатов моделирования (рис. 6.1).

Блок-диаграмма представляет собой набор стандартных блоков [5]. Она строится так. Из множества блоков выбирают нужные и далее выстраивают их в диаграмму для того, чтобы в процессе функционирования модели они как бы взаимодействовали друг с другом. Диаграмма сопровождается необходимыми комментариями. Использование блоков при построении моделей зависит от логических схем работы реальных систем, моделируемых на ЭВМ.

Теперь приступим к написанию программы модели.

Рис. 6.1.  Блок-диаграмма модели