Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
fiz_1_1_mekh_otnosit_vm_i_as_rab_var_1_09_12.doc
Скачиваний:
177
Добавлен:
31.03.2015
Размер:
15.49 Mб
Скачать

10.2. Следствия из преобразований Лоренца. Сокращение длины и замедление времени

Из преобразований Лоренца вытекает ряд необычных с точки зрения ньютоновой механики следствий.

Длина тел в разных системах отсчета.Рассмотрим стержень, расположенный вдоль оси х и покоящийся относительно системы отсчета К' (рис. 10.2). Длина его в этой системе равнаl0=x'2— x'1где x'1иx'2— не изменяющиеся со временем t' координаты концов стержня. Относительно системы К стержень движется вместе со штрихованной системой со скоростью v. Для определения его длины в этой системе нужно отметить

хх х2 х,х'

Рис. 10.2 системы отсчета К, К' . Относительно системы К стержень движется вместе со штрихованной системой со скоростью v

координаты концов стержня х1иx2в один и тот же момент времени t1=t2=t. Разность этих координатl=x2– х1даст длину стержня, измеренную в системе К. Чтобы найти соотношение междуl0иl, следует взять ту из формул преобразований Лоренца, которая содержитx', х иt, то есть первую из формул (10.9). Согласно этой формуле,

откуда получаем

или окончательно

(10.10)

Таким образом, длина стержня l, измеренная в системе, относительно которой он движется, оказывается меньше «собственной» длиныl0, измеренной в системе, относительно которой стержень покоится. Поперечные размеры стержня в обеих системах одинаковы. Итак, для неподвижного наблюдателя размеры движущихся тел в направлении их движения сокращаются, и тем больше, чем больше скорость движения.

Длительность процессов в разных системах отсчета.Пусть в некоторой точке, неподвижной относительно движущейся системы К', происходит

какой-то процесс, длящийся время At0= t'2— t'1. Это может быть работа какого-либо прибора или механизма, колебание маятника часов, какое-нибудь изменение в свойствах тела и так далее. Началу процесса соответствует в этой системе координата х' = а и момент времени t'1, концу — та же самая координата х'2= х'1= а и момент времениt'2Относительно системы К точка, в которой происходит процесс, перемещается. Согласно формулам (10.9),

началу и концу процесса в системе К соответствуют моменты времени

_

откуда получаем

Введя обозначения t2- t1= At, получим окончательно:

(10.11)

В этой формуле ∆t0— длительность процесса, измеренная по часам в движущейся системе отсчета, где тело, с которым происходит процесс, покоится. Промежуток At измерен по часам системы, относительно которой тело движется со скоростью v. Иначе можно сказать, что ∆t определено по часам, которые движутся относительно тела со скоростью v. Как следует из (10.11), промежуток времени ∆t0, измеренный по часам, неподвижным относительно тела, оказывается меньше, чем промежуток времени At, из-

измеренный по часам, движущимся относительно тела.

Заметим, что для релятивистских множителей (Лоренц-факторов) движущейся со скоростью V системы отсчета и/или движущейся со скоростью v частицы приняты обозначения

Г = 1/√(1 - V22)

и соответственно

γ = 1/√(1 - v22).

Если это не приводит к путанице, для обеих величин употребляется обозначение γ

Рассматривая протекание процесса из системы X, можно определить ∆t как его длительность, измеренную по неподвижным часам, a ∆t0— как длительность, измеренную по часам, движущимся со скоростью v. Согласно (10.11),

∆t0 < ∆t

поэтому можно сказать, что движущиеся часы идут медленнее,чем покоящиеся часы(имеется, конечно, в виду, что во всем, кроме скорости движения, часы совершенно идентичны).

Время ∆t0, отсчитанное по часам, движущимся вместе с телом, называется «собственным временем» этого тела. Как видно из (10.11), собственное время всегда меньше, чем время, отсчитанное по часам, движущимся относительно тела.

Эффект замедления времени симметричен по отношению к обоим рассматриваемым часам: для обоих наблюдателей из разных систем отсчета часы движущегося относительно него наблюдателя будут идти медленнее. Замедление времени является объективным следствием преобразований Лоренца, которые, в свою очередь, являются следствием постоянства скорости света во всех системах отсчета. Необходимо подчеркнуть то обстоятельство, что релятивистские эффекты отнюдь не умозрительны. На сегодняшний день СТО с очень хорошей точностью подтверждена экспериментально. Разумеется, при V/c —>> 0 формулы (10.10), (10.11) преобразуются к тривиальному

нерелятивистскому пределу. Для наблюдения нетривиальных эффектов необходимо исследовать объекты с V ~ с.

Примерами могут служить явления, наблюдаемые при изучении элементарных частиц. Одним из наиболее наглядных опытов, подтверждающих соотношение (10.11), является наблюдение в составе космических лучей одного из видов элементарных частиц, именуемых мюонами. Эти частицы нестабильны — они самопроизвольно распадаются на другие элементарные частицы. Время жизни мюонов, измеренное в условиях, когда они

неподвижны (или движутся с малой скоростью), равно примерно 2 • 10-6с. Казалось

бы, даже двигаясь почти со скоростью света, мюоны могут пройти от момента своего рождения до момента распада лишь путь, равный примерно 3 • 108м/с) (2 • 10-6с) = 600 м. Однако наблюдения показывают, что мюоны, образуясь в космических лучах в верхних слоях атмосферы на высоте 20-30 км, успевают, тем не менее, в большом количестве достигнуть земной поверхности. Это объясняется тем, что 2*10-6с — собственное время жизни мюона, то есть время, измеренное по часам, которые бы «двигались вместе с

ним». Время, отсчитанное по часам экспериментатора, связанного с поверхностью Земли, оказывается гораздо большим из-за того, что скорость мюонов близка к скорости света. Поэтому не удивительно, что экспериментатор наблюдает пробег мюона, значительно превышающий 600 м. Интересно рассмотреть этот эффект с точки зрения наблюдателя, «движущегося вместе с мюоном». Для него расстояние, пролетаемое до поверхности Земли, сокращается до 600 м в соответствии с формулой (10.10), так что мюон успевает

пролететь его за 2 • 10-6с, т. е. за «собственное время жизни».

Наиболее впечатляющее следствие преобразований Лоренца —относительность одновременности разнесенных в пространстве событий. Если два события А и В произошли одновременно в одной точке пространства, то в любой системе координат tA=tB. Конкретные значения, например, tAи t'Aмогут быть различными, но в каждой системе останется справедливым равенство t'A= t'B. Если же при tA = tBокажется, что

хА≠ хв, то в любой другой системе, как это с очевидностью следует из преобразований Лоренца, tA≠tB.

Почему это обстоятельство до Эйнштейна оставалось незамеченным? До Эйнштейна явно или неявно сохранялось представление о существовании абсолютного пространства и абсолютного времени. Но если нет абсолютной системы отсчета, нет и абсолютной одновременности. Исчезает не только абсолютное пространство, исчезает и абсолютное время, которое, по Ньютону, течет «всегда одинаково, безотносительно к чему-либо внешнему». Время СТО зависит от системы отсчета. Зависит от системы отсчета и промежуток времени между двумя событиями, и расстояние между двумя точками. В механике Галилея-Ньютона координаты точек зависят от системы отсчета, но расстояние между точками А и В

А - xB)2 + (уА - ув)2 + (zA - zB)2= l2

от системы не зависит. В механике СТО эта величина перестает быть инвариантом. Независимым от системы отсчета становится интервал между событиями, определяемый соотношением

s2AB = c2(tA - tB)2 - (хА - xB)2 + (уА - ув)2 + (zA - zB)2.

Время становится в один ряд с пространственными координатами или, как сказал Г. Минковский, «пространство само по себе и время само по себе погружаются в реку забвения, а остается жить лишь своеобразный их союз». Это проявляется особенно наглядно, если, следуя Минковскому, в качестве четвертой координаты выбрать не t, как таковое, a ict. Тогда интервал запишется в симметричной форме:

He следует, однако, воспринимать четырехмерное пространство Минковского как простой аналог нашего трехмерного мира. Все же четвертая координата сохраняет важнейшее отличие от трех остальных — однонаправленность, которой, в частности, обусловлены

причинно-следственные связи. Путешествие вспять во времени как было, так и остается невозможным.

Ввиду того, что по Лоренцу, в отличие от Галилея, преобразуется, кроме координат, и время, заметно меняется закон сложения скоростей. Если в системе К тело движется со скоростью v, имеющей составляющие по осям координат vxvyvz а система К' движется со скоростью V вдоль осиx, для составляющих скорости тела в системе К' получаем

С учетом того, что

(10.12)-(10.14)

Хотя координаты у' и z' равны соответственно у и z, составляющие скорости

по этим осям в разных системах различны, так как различаются темпы течения времени.

Не представляется неожиданным факт, что если vx по модулю равна скорости света — с, то эта величина не изменится при переходе в любую другую систему отсчета. Ведь именно инвариантность скорости света является критерием справедливости преобразований Лоренца.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]