Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
физхимия лекции.doc
Скачиваний:
32
Добавлен:
04.11.2018
Размер:
3.43 Mб
Скачать

10. Направление протекания процессов в неизолированных системах и термодинамические условия равновесия.

Полные дифференциалы от F и G:

dF = dU - TdS - SdT и dG = dU - TdS - SdT + pdV + Vdp. (4.58)

Из соотношения (4.51):

dU TdS - pdV. (4.59)

Тогда

dF TdS - pdV - TdS - SdT и dG TdS - pdV - TdS - SdT + pdV + Vdp

и окончательно:

dF - SdT - pdV и dG - SdT + Vdp. (4.60)

Полученные соотношения (4.60) показывают, что при V, T = const (изохорно - изотермические условия):

dF 0, (4.61)

а при p, T = const (изобарно - изотермические условия):

dG 0, (4.62)

Таким образом в неизолированных системах, находящихся в условиях V, T = const самопроизвольно могут быть реализованы процессы, сопровождающиеся уменьшением энергии Гельмгольца, а в случае р, Т = const - уменьшением энергии Гиббса.

Пределом протекания процессов или состоянием термодинамического равновесия является достижение некоторого минимума этих функций для данных условий:

d(F, G) = 0 и d2(F, G) > 0. (4.63)

11. Уравнение Гиббса - Гельмгольца.

Функции F и G, как оказалось - надежный критерий оценки возможности, направления и пределов протекания естественных процессов в неизолированных системах. Однако при решении реальных задач возникает необходимость знания зависимости F и G от температуры.

После дифференцирования (4.57):

dF = dU - TdS - SdT,

где TdS = dU + pdV.

Тогда:

dF = dU - dU - pdV - SdT = -pdV - SdT,

из чего:

F = f (V, T). (4.64)

Тогда:

, (4.65)

где

= -p, а = -S. (4.66)

Аналогично:

dG = dU + pdV + Vdp - TdS - SdT,

где TdS = dU + pdV.

Тогда:

dG = dU + pdV + Vdp - dU - pdV - SdT = Vdp - SdT,

следовательно

G = f (p, T). (4.67)

После дифференцирования (4.67):

,

откуда

, а , (4.68)

После замены из (4.66) и (4.68) уравнения (4.57) примут вид:

и . (4.69)

Получены два важных уравнения, называемые уравнениями Гиббса - Гельмгольца, устанавливающие зависимость F и G, при V и p = const соответственно, от температуры.

Составляя уравнения (4.69) для исходного и конечного состояния системы и вычитая первые из вторых можно получить соотношения для изменения этих функций:

и . (4.70)

Из ранее изложенного:

; ; ; .

Поэтому:

, a (4.71)

или уравнение Гиббса - Гельмгольца в обобщенной форме записи:

, (4.72)

где - температурный коэффициент работы.