Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
1831.doc
Скачиваний:
733
Добавлен:
15.06.2014
Размер:
15.62 Mб
Скачать
    1. Принципы построения, признаки и состав мехатронных систем

Мехатронные устройства – это выделившийся в последние десятилетия класс машин, или узлов этих машин, базирующийся на использовании в них точной механики, электропривода, электроники, компьютерного управления. Мехатронное устройство обладает следующими характерными признаками:

  1. Наличие: выходного механического звена (ВМЗ), выполняющего внешние функции мехатронного устройства; силового электромеханического привода выходного звена; устройства программного управления приводом; информационной системы, контролирующей состояние окружающей среды и состояние самого мехатронного устройства.

  2. Минимум преобразований информации и энергии (например, использование высокомоментных или линейных двигателей без редукторов) – принцип минимума преобразований.

  3. Использование одного и того же элемента мехатронного устройства для реализации нескольких функций – принцип совмещения функций.

  4. Объединение корпусов мехатронного устройства – принцип совмещения корпусов.

  5. Применение сверхплотного монтажа элементов.

Примерами современных мехатронных устройств являются модули станков и промышленных роботов, устройства внешней памяти компьютеров, принтеры, бытовая техника и т. п. Мехатронное устройство может быть либо машиной, либо узлом (функциональный элемент, модуль) машины.

Мехатронный узел включает в себя:

– механизм, состоящий из корпуса, привода и выходного механического звена. Последнее может включать силовой элемент, механическую передачу движения, рабочий орган или другой оконечный элемент ВМЗ;

– усилитель мощности силового элемента;

– устройство управления усилителем мощности;

– внутреннюю информационную систему (датчики состояния самого мехатронного узла, средства обработки информации с датчиков);

– внешнюю информационную систему (сенсоры информации о внешней среде мехатронного узла, средства обработки этой информации);

– устройство управления мехатронным узлом.

Глава 2. Применение мехатронных машин

2.1. Мобильные мехатронные роботы для инспекции и ремонта подземных трубопроводов

Проблема эксплуатации и ремонта трубопроводов актуальна для нефтяных и газопроводов, для водопроводных и канализационных сетей (особенно для крупных городов и мегаполисов), для каналов водосброса и водозабора из рек. Применение мобильных роботов для телеинспекции и обслуживания магистралей позволяет предупреждать техногенные и экологические аварии и катастрофы и внедрить бестраншейные методы ремонта. Роботизация позволяет также осуществлять реновацию и санацию ветхих магистралей, проводить приемку новых и контроль за состоянием действующих трубопроводов, проводить экологический мониторинг сетей, составлять карты подземных коммуникаций.

В качестве примера решения этой технической проблемы рассмотрим робот Р-200, предназначенный для телеинспекции трубопроводов диаметром от 150 до 1200 мм. Этот мобильный робот имеет набор сменных колес и цветную поворотную телекамеру. Управляется робот дистанционно оператором с поста управления, размещенного в автомобиле (длина кабеля до 200 м). Пост управления имеет цветной монитор и цифровую систему документирования на базе компьютера в промышленном исполнении. Телекамера оснащена устройством наведения (механизмы качания, ротации и подъема) для осмотра стенок трубы, блоками основного и дополнительного освещения, электромеханический стеклоочиститель, а также имеет дистанционный привод фокусировки. Робот имеет герметичное исполнение, способен работать с погружением в воду, корпус накачивается азотом для предотвращения конденсации влаги внутри него и запотевания стекол телекамеры. Приводы перемещения представляют собой мехатронные модули типа «мотор-колесо» на базе двигателей постоянного тока. Схема телеинспекции показана на рисунке 2.1а. Помимо системы технического зрения робот оснащен датчиком пути, датчиком углов крена и дифферента корпуса, датчиками углов ориентации телекамеры. Эти сенсоры необходимы не только для управления движением робота, но и для трассировки залегания трубопровода, дают информацию о профиле трубы и координатах дефекта (свища, трещины) или обнаруженного постороннего предмета.

Рис. 2.1 Схемы роботизированных операций:

а) телеинспекция трубопровода; б) подрезка выступающих элементов;

в) локальная заделка дефекта; г) дефект в трубопроводе;

д) зачистка с помощью фрезерной головки;

е) установка внутреннего бандажа; ж) трубопровод после ремонта

Телероботы позволяют не только обнаружить, но и устранить целый ряд дефектов. Робот РОКОТ-1М комплектуется сменными рабочими органами – фрезерными и бандажными головками для выполнения ремонтных операций внутри трубы. Фрезерная головка предназначена для локальной зачистки поверхностей, сверления, подрезки выступающих элементов (наплывы, грат на сварных швах, штыри), прорезки боковых отводов после санации трубы пластиком. Заделка дефектов выполняется с помощью бандажной головки, которая накладывает кольцевой бандаж шириной 100 мм из ткани со специальной пропиткой. Схемы ремонта дефекта в трубопроводе для ликвидации утечек без раскопки показаны на рисунке 2.1б-ж.

Мобильный робот является характерной мехатронной системой, когда проектно-конструкторские решения по разработке электромеханической, сенсорной и электрической частей принимались только во взаимосвязи, учитывая уже с начальных этапов главный лимитирующий фактор – диаметр трубопровода.

Перспективы развития мобильной робототехники связаны с интеллектуализацией устройств управления и сенсоров, которая, в частности, заключается в автоматическом принятии решений о поведении роботов, это позволит повысить качество проводимых операций и автономность их выполнения.

Автоматическое принятие решений рассматриваемым роботом, без непосредственного участия человека-оператора, целесообразно на следующих операциях:

  • обнаружение и распознавание постороннего объекта в трубопроводе с использованием информации системы технического зрения и локационных дат­чиков;

  • планирование траектории и скорости движения при прохождении по­воротов на базе сенсорных сигналов от двухкомпонентного датчика крена-дифферента и датчиков приводных модулей «мотор-колесо»;

  • управление режимами работы фрезерной головки на основании информации о действующих силах и моментах;

  • диагностика и измерение толщины стенки трубы.

Соседние файлы в предмете Мехатроника
  • #
    15.06.2014817.15 Кб445017503.doc
  • #
    15.06.201415.62 Mб7331831.doc
  • #
    15.06.20142.1 Кб16anim..xml
  • #
    15.06.201488.73 Кб31Деталь.m3d
  • #
    15.06.2014149.18 Кб11Деталь2.m3d
  • #
    15.06.201465.44 Кб7Деталь3.m3d
  • #
    15.06.201471.16 Кб11Деталь4.m3d