Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
7_Obmen_aminokislot_i_nukleoproteinov.doc
Скачиваний:
161
Добавлен:
31.03.2015
Размер:
8.29 Mб
Скачать

2.4. Гниение белков в кишечнике. Пути использования аминокислот в организме после всасывания.

Гниение белков в кишечнике: под влиянием микрофлоры нижнего отдела кишечника некоторые аминокислоты могут подвергаться превращениям до аминов, жирных кислот, спиртов, фенолов, сероводорода и др.

Общее направление этих реакций:

  1. При декарбоксилировании аминокислот возможно образование соответствующих нередко ядовитых аминов.

  2. При дезаминировании возникают насыщенные и ненасыщенные кислоты, кетокислоты, оксикислоты.

Путресцин образуется при декарбоксилировании орнитина, а кадаверин – из лизина. Они относятся к группе трупных ядов. Выводятся из организма через почки с мочой почти в неизменном виде. Выделение путресцина и кадаверина с мочой наблюдается при холере, дизентерии и т.д.

Фенол и крезол образуются из тирозина. После всасывания они обезвреживаются в печени. Происходит это либо за счет связывания с Н24, либо с глюкуроновой кислотой. В результате образуются парные серные-, фенол- или крезолглюкуроновые кислоты. Они называются еще эфиро-серными кислотами и являются постоянными составными частями мочи. Серная кислота присоединяется в виде активной формы, формируя фосфоаденин фосфосульфат (ФАФС), глюкуроновая кислота – уридиндифосфат глюкуроновой кислоты (УДФГК).

Индол и скатол образуется при декарбоксилировании из триптофана. Они обусловливают специфический запах кала, являются ядовитыми веществами и обезвреживаются в печени. Индол связывается в виде эфирсерной кислоты калиевая соль этой кислоты получила название животного индикана, который выводится с мочой и по его количеству судят не только о скорости процесса гниения, но и о функциональном состоянии печени.

Пути использования аминокислот после всасывания:

  1. Синтез специфических белков тканей, плазмы крови, ферментов, гормонов.

  2. Синтез углеводов (глюконеогенез).

  3. Синтез липидов.

  4. Синтез гистамина, серотонина, креатина, порфиринов, холина, адреналина, пуриновых, пиримидиновых нуклеотидов.

  5. Синтез мочевины.

  6. Оставшиеся неиспользованные аминокислоты подвергаются распаду с выделением энергии (10-15%).

Общие пути распада аминокислот:

  1. Декарбоксилирование;

  2. Трансаминирование;

  3. Дезаминирование;

2.5. Декарбоксилирование и трансаминирование, биологическое значение. Диагностическое значение

определения активности трансаминаз.

Декарбоксилирование – процесс отщепления группы СО2 при участии декарбоксилаз, небелковый компонент которых пиридоксальфосфат (ПФ), активная форма витамина В6. Реакции декарбоксилирования необратимы. Их продуктами являются СО2 и биогенные амины, которые выполняют функцию нейромедиаторов (серотонин, дофамин, ГАМК), гормонов (адреналин, норадреналин), регуляторных факторов местного действия (гистамин, карнозин и др.).

Гистамин – образуется путем декарбоксилирования гистидина в тучных клетках соединительной ткани. Секретируется в кровь при повреждении ткани (удар, ожог), развитии иммунных и аллергических реакций. Роль:

  1. стимулирует секрецию желудочного сока, слюны;

  2. повышает проницаемость капилляров, вызывает отеки, снижает АД (но увеличивает внутричерепное давление, вызывает головную боль);

  3. сокращает гладкую мускулатуру легких, вызывает удушье;

  4. участвует в формировании воспалительной реакции – вызывает расширение сосудов, покраснение кожи, отечность ткани;

  5. выполняет роль нейромедиатора;

  6. является медиатором боли.

Декарбоксилаза (ФП)

Серотонин – нейромедиатор проводящих путей. Образуется в надпочечниках и ЦНС из аминокислоты 5-окситриптофана. Он может превращаться в гормон мелатонин, регулирующий суточные и сезонные изменения метаболизма организма и участвующий в регуляции репродуктивной функции. Роль:

  1. стимулирует сокращение гладкой мускулатуры;

  2. оказывает сосудосуживающий эффект;

  3. регулирует АД, температуру тела, дыхание;

  4. обладает антидепрессантным действием;

  5. принимает участие в аллергических реакциях.

декарбоксилаза

5-окситриптофан серотонин

ФП

γ-аминомаслянная кислота (ГАМК) – образуется путем декарбоксилирования глутаминовой кислоты. Основной тормозной медиатор высших отделов мозга. Роль:

1.увеличивает проницаемость постсинаптических мембран для ионов К+, что вызывает торможение нервного импульса;

2. повышает дыхательную активность нервной ткани;

3. улучшает кровоснабжение головного мозга.

ГАМК в виде препаратов гаммалон или аминалон применяют при сосудистых заболеваниях головного мозга (атеросклероз, гипертония), нарушениях мозгового кровообращения, умственной отсталости, эндогенных депрессиях, травмах головного мозга, эпилепсии.

СО2

COOH-CH2-CH2-CH(NH2)-COOH COOH-CH2-CH2-CH2(NH2)

Глутаминовая кислота ФП ГАМК

Трансаминирование – процесс переноса аминогруппы с α-аминокислоты на кетокислоту при участии ферментов трансаминаз (В6 – фосфопиридоксаль). Этому процессу подвергаются все аминокислоты, кроме лизина, треонина и пролина.

Реакцию трансаминирования катализируют высокоактивные аминотрансферазы: аланинаминотрансфераза (АЛТ) и аспартатаминотрансфераза (АСТ), которые обладают субстратной специфичностью.

АЛТ и АСТ – органоспецифические ферменты, в норме в крови их активнрсть равна 5-40 ЕД/л, т.е. активность трансаминаз сравнительно низкая. При заболеваниях, сопровождающихся деструкцией (некрозом) клеток, происходит выход ферментов в кровь и повышение их активности. Определение активности АЛТ и АСТ имеет большое диагностическое значение. Для дифференциальной диагностики заболеваний печени и сердца определяют соотношение активности АСТ/АЛТ в сыворотке крови – «коэффициент де Ритиса», который в норме составляет 1,33±0,42.

При гепатитах активность АЛТ увеличивается в 6-8 раз по сравнению с нормой, а АСТ – в2-4 раза. «Коэффициент де Ритиса» уменьшается примерно до 0,6. Особенно важное значение для диагностики имеет повышение активности АЛТ при безжелтушных формах вирусного гепатита. У детей при гепатитах активность АЛТ возрастает еще в дожелтушный период развития болезни. Однако, при церрозе печени «Коэффициент де Ритиса» приближается к 1,0, что свидетельствует о некрозе клеток, при котором в кровь выходят обе фракции (цитоплазматическая и митохондриальная).

При инфаркте миокарда активность АСТ увеличивается в 8-10 раз, а АЛТ – в 1,5 -2,0 раза. Значение «Коэффициента де Ритиса» резко возрастает. Инфекционные и токсические миокардиты характеризуются повышением АСТ, это же самое наблюдается при операциях на сердце.

При стенокардии, пороках сердца, инфаркте легкого активность аминотрансфераз в крови не возрастает.