Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Учебное пособие по гидравлике.doc
Скачиваний:
93
Добавлен:
01.04.2015
Размер:
11.72 Mб
Скачать

Раздел 1 Гидравлика

  1. Силы, действующие в жидкости

Жидкостью называется физическое тело способное изменять свою форму под действием сколь угодно малых сил, т.е., как принято говорить, жидкость обладает текучестью.

Жидкости делятся на два класса: капельные и газообразные (газы). Капельные жидкости способны образовывать капли. Если их объем меньше объема сосуда, они занимают часть его. В этом случае они имеют поверхность раздела капельной жидкости с газом, называемую свободной поверхностью.

Газы занимают весь предоставленный им объем. В курсе гидравлики изучаются только капельные жидкости, называемые просто жидкостями.

Жидкость рассматривается как сплошная среда, т.е. среда без пустот и переуплотнений (по-латыни такая среда называется континуум).

Вследствие текучести жидкости в ней принципиально не могут существовать сосредоточенные силы, а только равномерно приложенные к объему (массе) или к поверхности. Поэтому силы, действующие в жидкости, подразделяют на объемные (массовые) и поверхностные.

Массовые силы в соответствии со вторым законом Ньютона пропорциональны массе жидкости или ее объему. К ним относятся сила тяжести и сила инерции переносного движения, т.е. на элементарный объем жидкости ΔW c плотностью ρ, движущийся с ускорением Ј действует массовая сила ΔF = ρΔW·Ј.

Поверхностные силы непрерывно распределены по поверхности жидкости и пропорциональны величине этой поверхности. Эти силы обусловлены непосредственным воздействием соседних объемов жидкости на данный объем или же воздействием других тел (твердых или газообразных), соприкасающихся с данным жидким телом.

В общем случае при движении жидкости поверхностная сила ΔR, действующая на элементарной площади Δ, направлена под некоторым углом к ней, и силу ΔR можно разложить на нормальную ΔР и тангенциальную ΔТ составляющие (рис. 1.1).

Рис. 1.1

Нормальное напряжение в жидкости называется давлением.

Истинное давление

. (1.1)

Среднее давление на заданной поверхности

Н/м2 (1.2)

Касательное напряжение в жидкости, т.е. напряжение силы трения обозначается τ и выражается подобно давлению.

Истинное касательное напряжение

. (1.3)

Среднее касательное напряжение на заданной поверхности

, Н/м2 (1.4)

Способность жидкости воспринимать сжимающие усилия (давления) ничем не ограничена. Этого нельзя сказать о растягивающих усилиях. Наличие в жидкостях мельчайших твердых частиц и растворенного воздуха делает их практически не сопротивляющимися растяжению. Примем это утверждение за аксиому.

2. Физические свойства жидкости

2.1. Плотность и удельный вес жидкости

Ввиду того, что жидкость в отличие от твердого тела в значительно большей степени подвержена изменению своей массы под действием внешних сил, строго судить о плотности можем только в данной точке жидкости, т.е. плотностью жидкого тела будем называть предельное значение отношения массы элементарного тела к его объему. Такая плотность называется истинной

(2.1)

Пренебрегая изменением массы, т.е. считая жидкость однородной, ее плотность можно выразить аналогично твердому телу, т.е.

, кг/м3 (2.2)

Плотность жидкостей зависит от температуры. Она уменьшается с ее ростом. Некоторым особняком в этом отношении находится вода. Так, дистиллированная вода имеет максимальную плотность, равную 1000 кг/м3 при температуре порядка 4оС. до этой температуры и после она меньше. Это имеет принципиальное значение с точки зрения обмена слоев воды в естественных водоемах.

Для удобства составления таблиц плотностей различных физических тел, в том числе и жидкостей, применяют понятие относительной плотности δ, равной плотности физического тела к плотности воды при 4оС:

. (2.3)

По аналогии с плотностью истинным удельным весом называется предельное значение отношения веса элементарного тела к его объему:

(2.4)

Если считать жидкость однородной, ее удельный вес можно выразить как

, Н/м3 (2.5)

Связь между удельным весом и плотностью в земных условиях легко найти, если учесть, что G = М·g:

γ = ρg. (2.6)

Для инструментального определения плотности служат приборы, называемые ареометрами.