Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Учебное пособие по гидравлике.doc
Скачиваний:
93
Добавлен:
01.04.2015
Размер:
11.72 Mб
Скачать

10.2.3. Воздушные насосы

Воздушные насосы (эрлифты) позволяют поднять жидкость на какую-то высоту, используя при этом разность плотностей.

Рассмотрим принцип действия эрлифта на примере подъема воды из скважины (рис.10.26).

Если погрузить в скважину 1 вертикальную трубу 2 и подать в нее через мелкие отверстия 3 (форсунку) воздух от компрессора по трубе 5, то в трубе 2 образуется водовоздушная эмульсия, которая поднимается до поверхности земли и поступает в емкость 6.

Рис.10.26

Из рисунка 10.26 видно, что в сечении 0-0 со стороны скважины 1 с водой и со стороны трубы 2 с эмульсией давление будет одинаковым, т.е. ρвgh = ρэмg(h+Н). высота поднятия эмульсии над уровнем воды в скважине

.

отсюда следует, что высота поднятия воды Н зависит только от двух факторов: плотности эмульсии ρэм и глубины погружения форсунки 3. зависимость между подачей и остальными рабочими параметрами эрлифта можно найти на основе следующих рассуждений.

Энергия, передаваемая компрессором в 1 с объему воздуха Qв.ат, м 3, отнесенному к атмосферному давлению при сжатии его от атмосферного давления рат. до давления р, под которым он подводится к форсунке, при изотермическом процессе определяется по формуле

.

Производимая сжатым воздухом полезная работа заключается в подъеме воды объемом Q, м3, в 1 с на высоту Н:

Nп = ρgQH.

Учитывая неизбежные потери введением КПД эрлифта η, можно написать:

или

.

Выразив давление р в паскалях при ρ=1000 кг/м3 и рат =0,1 МПа, из полученного уравнения после ряда преобразований получим искомую зависимость:

.

Из последней формулы следует, что подача эрлифта уменьшается с увеличением высоты подъема Н. при постоянных напоре и заглублении эрлифта она возрастает с увеличением Qв.ат. казалось бы, здесь кроются неограниченные возможности увеличения Q. Однако оказывается, что при слишком большом расходе воздуха эмульсия в водоподъемной трубе перестает быть однородной, что резко снижает эффективность эрлифта и приводит к уменьшению Q и H.

Что касается КПД воздушного насоса, то даже в благоприятных условиях он не превышает 0,3…0,4, а с учетом потерь в компрессоре общий КПД установки составляет обычно 0,15…0,20. Таким образом, по энергетическим показателям это не очень эффективный способ подъема воды. В то же время устройство эрлифта чрезвычайно просто, у него нет подвижных частей и поэтому не опасно попадание в него взвешенных частиц.

10.2.4. Шнековые насосы

Согласно ГОСТу шнековый насос – это насос трения, в котором жидкая среда перемещается через винтовой шнек в направлении его оси (рис.10.27).

Рис. 10.27

Основным рабочим органом насоса является шнек 1, представляющий собой вал с навитой на него спиралью. Как правило, шнек выполняют трехзаходной спиралью, что обеспечивает подачу воды и равнопрочность шнека при любом угле поворота.

Шнек, установленный наклонно, вращается в лотке 2, выполненном обычно из бетона. Линейная скорость кромок шнека 2…5 м/с соответствует частоте вращения 20…100 мин-1 в зависимости от диаметра шнека. Для получения такой частоты вращения приводной электродвигатель 3 соединяют с валом шнека через редуктор или клиноременную передачу 4.

Угол наклона шнека принимают 25…30°, что при обычной длине шнека 10..15 м обеспечивает высоту подъема 5…8 м. Чем больше подача, тем больше должно быть поперечное сечение шнека, а это увеличивает его жесткость.

Подача шнековых насосов колеблется от 15 до 5000 л/с при высоте подъема 6…7 м. Средний КПД шнековых насосов составляет около 0,70..0,75 и остается практически постоянным в большом диапазоне подачи.