Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
конспект лекций.pdf
Скачиваний:
141
Добавлен:
11.05.2015
Размер:
2.3 Mб
Скачать

Прекрасным разделительным слоем является платина: достаточно пленки толщиной 45нм, чтобы предотвратить взаимодействие между слоями, например, титана и алюминия. Без разделительного слоя выбрать устойчивую биметталическую систему трудно.

Одной из причин нестабильности многослойных систем является взаимная диффузия атомов металлов. Диффузией объясняются реакции образования твердых растворов, например в системе хром – золото (при этом наблюдается рост сопротивления на порядок), или интерметаллических соединений, как в большинстве систем с алюминием.

Нестабильность может быть также из-за рекристаллизации (например, в системе алюминий - хром), окисления или явления упорядочения решетки в пределах ближнего порядка, характерного для систем с хромом и титаном. Особенно важно проявление взаимодействия в практических условиях нанесения и вжигания слоев, а также при эксплуатации прибора.

5.3. Использование силицидов металлов

С увеличением степени интеграции и уменьшением размеров элементов интегральных схем стало невозможным решить с помощью только металлических пленок проблемы создания контактов и межсоединений к сверхтонким структурам (эмиттерные и базовые контакты в биполярных транзисторах, контакты и выводы в МДП-транзисторах). Широко используются сейчас, наряду с алюминием и тугоплавкими металлами (Mo, W), силициды тугоплавких металлов TiSi2, TaSi2, WSi2, MoSi2, а также их сочетания с легированным поликристаллическим кремнием. Особенно привлекателен TiSi2, обладающий наименьшим удельным сопротивлением.

Силициды металлов могут быть получены либо при осаждении металла на кремний с последующим отжигом, либо при одновременном распылении (сораспылении) кремния и тугоплавкого металла, например с использованием магнетронного распыления.

При напылении металла и последующем его вжигании в кремний образующиеся силициды могут иметь три модификации: Me2Si с температурой образования примерно 200 °С, MeSi (моносилицид) с температурой образования 400 - 500 °С и MeSi2 (дисилицид) с наибольшей (более 600 °С) температурой образования. Не все силициды металлов имеют все три модификации, так, Pd, Pt образуют два первых соединения, a Ti и Та только два последних. Две первые модификации силицидов металлов растут по параболическому закону: квадрат толщины пленки х2 пропорционален времени вжигания t. В этом случае атомы металла диффундируют в кремний по междоузлиям, что приводит к ослаблению ковалентной связи в полупроводнике в случае большой концентрации металлических атомов. Ослабление ковалентных связей можно рассматривать как переход к связям, подобным металлическим. Одновременно идет и диффузия кремния в металл, но она гораздо слабее. При малой растворимости тугоплавких металлов в кремнии для образования растворов замещения необходимо создать большую концентрацию вакансий в кремнии. Поскольку энергия образования вакансии достаточно велика, то при низких температурах (менее 400 - 500 °С) это маловероятно.

При более высокой температуре (выше 600 °С) отрыв атома кремния может происходить на его поверхности на границе с металлом в энергетически слабых точках, например на ступеньках, за счет увеличения энергии атомов под влиянием тепловых колебаний. Рост силицида ограничивается поступлением атомов кремния, скоростью разрыва связей Si - Si, т.е. реакцией с металлом на границе раздела. Поэтому рост силицида идет по линейному закону: х пропорциональна t, и в диффузионном потоке преобладают атомы кремния.

Рост силицидов на поликристаллическом кремнии происходит аналогично росту на монокристалле.

В присутствии кислорода или паров воды скорость роста силицида уменьшается. Многие тугоплавкие металлы образуют как силициды, так и окислы (Ti, Та, V). При нанесении металла на окисел кремния они образуют сильные адгезионные связи, взаимодействуя с окислом кремния улучшают адгезию Me - SiO2. При высокой температуре в результате этого взаимодействия образуется силицид металла, температура его образования на 100 - 200 °С выше, чем для реакции с кремнием. Причем на окисле кремния растут силициды, обогащенные металлом (например Ti5 Si3, а не TiSi2).

Силициды, полученные сораспылением, имеют более регулярный состав, однако их удельное сопротивление может быть выше, чем у полученных вжиганием в кремний. Возможно, это связано с большим размером кристаллитов у последнего и, следовательно, с большей подвижностью носителей заряда.

Применение силицидов металлов в качестве материалов омических контактов к тонким (менее 0,1 мкм) слоям кремния - одно из важных направлений современной технологии ИМС. Особенно перспективно использование для этих целей TiSi2. Помимо наименьшего удельного сопротивления силицид титана при взаимодействии с кислородом и окислом кремния образует окисел титана TiO2, который является полупроводником с шириной запрещенной зоны около 2 эВ. Таким образом, окисел титана не препятствует протеканию тока в контакте и незначительно увеличивает его сопротивление.

5.4. Многоуровневая металлизация

В современных интегральных схемах необходима многоуровневая металлизация. При изготовлении систем с многоуровневой металлизацией между слоями металла наносится пленка диэлектрика.

К многоуровневым системам предъявляются дополнительные требования. Осаждаемый диэлектрик (обычно SiO2) должен обладать хорошей адгезией к напыленной перед ним металлической пленке, силициду металла и поликристаллическому кремнию. Нанесенная пленка диэлектрика должна полностью покрывать пленку и образовавшиеся после фотолитографии ступеньки. Контакт между первым и вторым слоями металла или других материалов должен быть низкоомным.

При использовании многоуровневой разводки в интегральных схемах нельзя применять в качестве проводящего слоя только алюминий, так как за

счет взаимодействия с диэлектрическими слоями, между которыми он наносится, проводимость пленки будет со временем уменьшаться, могут появиться отдельные непроводящие участки или разрывы в металлизации. Вследствие этого при многоуровневой разводке используется обычно и многослойная металлизация. В качестве первого слоя, как указывалось ранее, могут быть выбраны платина, титан, молибден и их силициды. Задача этого слоя - обеспечить омический контакт к Si, хорошую адгезию к кремнию и окислу. Второй слой - проводящий - создается напылением золота, алюминия, серебра. Для изоляции от нанесенных поверх металла диэлектрических слоев наносится третий слой - изолирующий. В качестве металла третьего слоя могут использоваться платина, хром, титан, тантал, молибден или ванадий.

Многослойная металлизация применяется также для схем, имеющих поверхность с сильно выраженным рельефом, так как алюминиевые пленки на неровностях поверхности могут иметь обрывы из-за электродиффузии и возникающих в пленках напряжений.

Литература

1. Готра Ю. З. Технология микроэлектронных устройств. Справочник.-М., Радио и связь,1991

2.Моро У. Микролитография. –М., Мир, 1991

3.Родионов Ю. А. Литография в производстве интегральных микросхем. Дизайн ПРО, 1998

4.Кисель А. М., Родионов Ю. А. Химическая обработка в технологии ИМС. ПГУ, 2001

5.The Science and Engineering of Microelectronic Fabrication. Stephen A. Campbell. Oxford University Press, 2001

6.Fundamentals of Microfabrication. Marc J. Madou. CRC PRESS, 2001