Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
3.1.с / KCE / Концепции современного естествознания_Кунафин_2003 Уфа.doc
Скачиваний:
63
Добавлен:
17.05.2015
Размер:
3.24 Mб
Скачать

9.3. Микромир

Учение об элементарных частицах. Стандартная модель мироздания. От элементарных частиц к фундаментальным законам природы. Элементарная структура вещества. Молекулы – атомы – электроны – ядра.Устойчивость и неустойчивость частиц. Термоядерные процессы. Взаимопревращения микрообъектов. Лептоны – адроны – кварки.Фундаментальные взаимодействия и законы природы.Фундамент материи. Физический вакуум и его состояния. Виртуальные частицы.

Одним из наиболее специфических свойств микрообъекта является наличие в его поведении элементов случайности, вследствие чего квантовая механика предстаёт как принципиально статистическая теория, оперирующая вероятностями. В чем же причина того, что в поведении микрообъекта так велика роль случайности? Очевидно, это объясняется спецификой квантовой механики, в которой ни один объект не может, строго говоря, считаться полностью изолированным, полностью независимым от окружения. Какова природа случайных воздействий на микрообъект? Например, в квантовой теории поля она проявляется в явном виде - как взаимодействие микрообъекта с вакуумом (вакуум не пустота, - он «заполнен» виртуальными зарядами). Можно сказать, что микрообъект взаимодействует с окружающим его миром через виртуальные микрообъекты.

Поэтому представляется совершенно естественной интерпретация корпускулярно-волнового дуализма как потенциальной способности микрообъекта проявлять те или иные свойства в зависимости от внешних условий. Это подразумевает органическую связь микрообъекта с окружающим его миром - ведь сама сущность микрообъекта реализуется в том или ином виде в зависимости от конкретных условий, конкретной обстановки.

Квантовая механика восстанавливает диктуемую жизненным опытом идею единства мира и всеобщей связи явлений, которая была в значительной мере утрачена в классическом естествознании. Стираются существовавшие ранее резкие различия между волнами и корпускулами, между частицами и полями, между объектами наблюдения и средой; на первый план выдвигаются взаимопревращения материи.

9.3.1. Учение об элементарных частицах

После той непонятной и запутанной ситуации, которая была характерна для физики 1950 - 1960 годов, когда открываемые «элементарные частицы» исчислялись буквально сотнями, и их число продолжало непрерывно расти, сегодня положение заметно изменилось: мы имеем достаточно простую теорию фундаментальной природы материи и энергии, а также их трансформаций. Возникла так называемая стандартная модель мироздания, согласно которой физический универсум строится на основе двух групп фундаментальных составляющих: кварков* (из которых состоят нуклоны* и атомные ядра) и лептонов* (из которых наиболее известным является электрон). На основе этих двух групп частиц далее строятся атомы и молекулы - основа всей химии и биологии.

Согласно стандартной модели, кварки и лептоны связаны и взаимодействуют между собой посредством другой группы частиц, именуемых калибровочными бозонами*, такими как фотон, W- и Z-бозоны и глюоны. Известные в природе различные взаимодействия сведены к трём фундаментальным видам: электрослабому*, цветовому* и гравитационному, причём первые два сходным и весьма элегантным способом описываются в рамках концепции калибровочного поля*. Кроме того, есть надежда, что в обозримом будущем удастся создать теорию великого единения всех сил природы.

Всё же, несмотря на успех стандартной модели, многие из тех вопросов, которыми задаются сегодня физики в поисках полной «теории всего сущего», остаются неразрешёнными. В число этих вопросов входят:

  • Каково происхождение массы и чем определяются массы различных элементарных частиц? Будут ли экспериментально обнаружены хиггсовы бозоны* - гипотетические частицы, специально постулированные в рамках стандартной теории для объяснения явления спонтанного нарушения симметрии?

  • Будет ли открыто ещё одно поколение кварков и лептонов, а вместе с ним ещё один, более фундаментальный уровень элементарных частиц?

  • Существуют ли в природе другие, ещё не открытые нами силы?

  • Подтвердятся ли такие теоретические идеи, как, например, идея суперсимметрии* и техницвета*? Удастся ли физикам обнаружить постулируемые ими суперсимметричные частицы? Будем ли мы иметь полную теорию «всего сущего»? Оправдает ли теория суперструн* связываемые с ней надежды91?

Исторически термин «элементарные частицы» был введен для тех частиц, которые считались неделимыми и бесструктурными, и из которых построена вся материя. В современной физике этот термин употребляется менее строго - для обозначения большой группы «мельчайших частичек материи», не являющихся атомами и атомными ядрами (единственным исключением является протон.)

В группу элементарных частиц помимо протона входят нейтрон, электрон, фотон, а также пи-мезоны, мюоны, тяжелые лептоны, нейтрино трех типов (электронное, мюонное и t- нейтрино), странные частицы (K - мезоны, гипероны), огромное количество разнообразных резонансов, мезоны со скрытым очарованием (J/Y, Yв) и другие «очарованные» частицы, ипсилон-частицы (U), «красивые» частицы, промежуточные векторные бозоны (W±, Z0) - число таких частиц продолжает расти - (открыто около 1000) и, скорее всего, неограниченно велико. Большинство перечисленных частиц, строго говоря, не удовлетворяют критерию элементарности, так как являются составными объектами. В соответствии со сложившейся практикой термин «элементарные частицы» употребляется для обозначения всех субъядерных частиц.

При обсуждении частиц, претендующих на роль первичных элементов материи, используют термин «истинно элементарные» или «фундаментальные частицы». При этом, наряду с уже известными частицами, такими как электрон, фотон и нейтрино, теоретики вынуждены вводить новые частицы, которые еще только предстоит обнаружить. Часть же требуемых частиц (например, кварки) оказалось необходимым наделить такими свойствами, что они никогда не будут обнаружены в свободном состоянии (вне составных элементарных частиц).

Изучение элементарных частиц и их взаимодействий представляет прямой (возможно единственный) путь к пониманию фундаментальных законов природы. Информация об элементарных частицах получается либо в результате экспериментов с космическими лучами, либо с помощью построенных ускорителей.

В зависимости от типа ускоряемых частиц различают протонные и электронные ускорители. Кроме того, ускорители бывают кольцевые и линейные. В линейных ускорителях частицы разгоняют вдоль прямой линии. В кольцевых ускорителях, «циклотронах», частицы ускоряются, летая по кругу. Использование ускорителей позволяет изучать свойства элементарных частиц и излучений в самых разных условиях. Подвергая определенные мишени бомбардировкам этими частицами, можно получить атомы других элементов, в том числе - и доселе неизвестных. Именно таким способом получают в научном центре в Дубне новые элементы Периодической системы Д. И. Менделеева.

В кольцевых ускорителях, вдоль всего кольца, в котором движутся разгоняемые заряженные частицы и из которых откачан воздух, стоят электромагниты. Чем сильнее магнитное поле, тем более энергичные частицы могут быть удержаны внутри кольца (камеры). Разгоняются частицы при помощи электрического поля в ускоряющих промежутках, которые расположены вдоль кольца. В кольцевом ускорителе, где частица может многократно пролететь вдоль кольца, пока не наберет нужную энергию, электрическое поле может быть не очень сильным. В линейном ускорителе, напротив, ускоряющие электрические потенциалы должны быть предельно высокими, потому что частица должна набрать всю свою энергию за один пролет. (Линейные ускорители используются также и для получения высокоэнергичных пучков ионов и ядер.) Один из самых больших действующих линейных ускорителей (SLAC) расположен в Стэнфорде (вблизи Сан-Франциско, США).

Соседние файлы в папке KCE