Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
3.1.с / KCE / Концепции современного естествознания_Кунафин_2003 Уфа.doc
Скачиваний:
63
Добавлен:
17.05.2015
Размер:
3.24 Mб
Скачать

3.4.2. Гипотеза м. Планка. Кванты

Начало развитию квантовой теории положили относящиеся к 1900 г. работы Макса Планка по теории излучения «черного тела». Попытка построить теорию излучения черного тела на основе законов классической физики привела к серьезным трудностям. Объясним, прежде всего, в чем заключались эти трудности.

Рассмотрим замкнутую полость, поддерживаемую при постоянной температуре и содержащую какие-либо материальные тела, способные испускать и поглощать излучение. Если эти материальные тела имели в начальный момент какую-либо температуру, отличную от температуры полости, то с течением времени в результате процессов испускания и поглощения температура их будет стремиться к температуре полости. Иначе, система будет стремиться к состоянию термодинамического равновесия, характеризуемому равновесием между поглощаемой и излучаемой в единицу времени энергией.

Это означало бы, что обмен энергией внутри рассматриваемой полости должен приводить к передаче энергии от любой длины волны к более короткой до тех пор, пока практически вся энергия не окажется в ультрафиолете или ещё дальше. То есть в соответствии с существующим законом Рэлея спектральная плотность энергии излучения должна была монотонно возрастать с увеличением частоты. На графике это означало бы, что кривая, показывающая спектральную плотность энергии, стремилась бы к бесконечности в области ультрафиолета. В то же время было очевидно, что эта «ультрафиолетовая катастрофа» не наблюдается у реальных излучателей, от разогретого докрасна железа до ярко-белого Солнца. Они излучают тепло в виде оранжевого света, вместо того чтобы остывать из-за быстрой ультрафиолетовой вспышки.

Все эксперименты определенно указывали на то, что с увеличением частоты спектральная плотность вначале растет, а затем, начиная с некоторой частоты, соответствующей максимуму плотности, падает, стремясь к нулю, когда частота стремится к бесконечности. Иначе говоря, кривая спектральной плотности энергии имеет колоколообразный вид. Это явно противоречило теории, поскольку по закону Рэлея спектральная плотность оказывалась монотонно возрастающей функцией частоты, а значит, отсюда следовал абсолютный вывод: полная плотность энергии черного излучения при всех температурах должна быть бесконечной!

Положение, сложившееся в результате этого расхождения между теорией и экспериментом, было очень серьезным, так как оно свидетельствовало, и многие физики это сознавали, о каком-то существенном недостатке классических теорий, непосредственным следствием которых был закон Рэлея.

М. Планк, приступая к решению этой задачи, располагал только той самой экспериментальной колоколообразной кривой, о которой мы говорили выше. Он задался вопросом: как нужно минимально изменить (модифицировать) теорию, чтобы согласовать её с фактами? Он заметил, что необходимо некоторое правило, которое бы оставляло красный свет практически неизменным, но подавляло бы фиолетовое и ультрафиолетовое излучение.

Суть предположения Планка состояла в том, что энергия излучения упакована маленькими (атомных масштабов) порциями (квантами). Размер квантов не одинаков для разных цветов - они крошечные у инфракрасного, маленькие у зелёного и большие у ультрафиолетового излучения. Как повлияет такая упаковка энергии излучения на предсказываемый спектр излучения?

Предположим, что в полости есть отверстие, через которое происходит излучение, и рассмотрим обмен энергией между излучением и стенками полости. Квантовые ограничения будут наиболее заметны для ультрафиолетового конца спектра, где кванты велики. Инфракрасный свет будет непрерывно изливаться обильным потоком крошечных квантов, неспособных повлиять на обмен энергией. Но ультрафиолетовый свет должен либо излучаться большими квантами, либо вовсе не излучаться. Голубое, фиолетовое и ультрафиолетовое излучение будут существенно подавлены, и тем самым будет предотвращена «ультрафиолетовая катастрофа». Более детально правило Планка гласит:

  1. Излучение упаковано порциями (кванты).

  2. Каждый квант состоит из излучения единственной частоты (и, следовательно, единственной длины волны, то есть из света «одного цвета» - из монохроматического излучения).

  3. Правило, определяющее размер квантов: энергия кванта пропорциональна частоте излучения в данном кванте, или энергия Е=hυ (постоянная Планка на частоту излучения)35.

Соседние файлы в папке KCE