Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Materialoznavstvo_2013_pravl_1.doc
Скачиваний:
219
Добавлен:
19.05.2015
Размер:
27.99 Mб
Скачать

1.3. Поняття про ізотропію і анізотропію

Властивості тіла залежать від природи атомів, з яких воно складається, і від сили взаємодії між цими атомами. Сили взаємодії між атомами в значній мірі визначаються відстанями між ними. В аморфних тілах із хаотичним розташуванням атомів у просторі відстані між атомами в різних напрямах рівні, отже, властивості будуть однакові, тобто аморфні тіла ізотропні.

У кристалічних тілах атоми правильно розташовуються в просторі, причому по різних напрямах відстані між атомами неоднакові, що зумовлює істотні відмінності в силах взаємодії між ними і, в кінцевому підсумку, різні властивості. Залежність властивостей від напряму називається анізотропією.

1.4. Алотропія, або поліморфні перетворення

Здатність деяких металів існувати в різних кристалічних формах залежно від зовнішніх умов (тиск, температура) називається алотропією, або поліморфізмом. Кожний вид ґрат є алотропічною видозміною, або модифікацією.

Прикладом алотропічної видозміни залежно від температури є залізо (Fe) рис. 1.3.

t < 9110C

ОЦК - Feα;

911 < t <13920C

ГЦК - Feγ;

1392 < t <15390C

ОЦК - Feδ

(високотемпературне Feα )

Рис. 1.3. Крива охолодження чистого заліза

Перетворення однієї модифікації на іншу протікає за постійної температури і супроводжується тепловим ефектом. Видозміни елементу позначаються буквами грецького алфавіту у вигляді індексу основного позначення металу.

Прикладом алотропічної видозміни, обумовленої зміною тиску, є вуглець: за низького тиску утворюється графіт, а за високого – алмаз.

Використовуючи явище поліморфізму, можна зміцнювати сплави за допомогою термічної обробки.

1.5. Магнітні перетворення

 Деякі метали намагнічуються під дією магнітного поля. Після усунення магнітного поля вони володіють залишковим магнетизмом. Це явище вперше виявлене на залізі й отримало назву феромагнетизму. До феромагнетиків належать залізо, кобальт, нікель і деякі інші метали.

У разі нагріву феромагнітні властивості металу зменшуються поступово: спочатку слабо, потім різко і за відповідної температури (точка Кюрі для заліза -768 °С) зникають. Вище за цю температуру метали стають парамагнетиками. Магнітні перетворення не пов'язані зі зміною кристалічної решітки або мікроструктури – вони обумовлені змінами в характері електронної взаємодії.

Розділ 2. Будова реальних металів. Дефекти кристалічної будови

2.1. Дефекти кристалічної структури

Із рідкого розплаву можна виростити монокристал. Їх зазвичай використовують у лабораторіях для вивчення властивостей тієї або іншої речовини.

Метали і сплави, отримані в звичайних умовах, складаються з великої кількості кристалів, тобто, мають полікристалічну будову. Ці кристали називаються зернами. Вони мають неправильну форму і по-різному орієнтовані в просторі. Кожне зерно має своє орієнтування кристалічної решітки, відмінне від орієнтування сусідніх зерен, унаслідок чого властивості реальних металів усереднюються, і явища анізотропії не спостерігається.

У кристалічній решітці реальних металів є різні дефекти (недосконалість), які порушують зв'язки між атомами та впливають на властивості металів. Розрізняють наступну структурну недосконалостей:

  • точкові – малі в усіх трьох вимірюваннях;

  • лінійні – малі у двох вимірюваннях і скільки завгодно протяжні в третьому;

  • поверхневі – малі в одному вимірюванні.

Однією з поширених недосконалостей кристалічної будови є наявність точкових дефектів: вакансій, дислокованих атомів і домішок (рис. 2.1).

а) б) в)

Рис. 2.1. Точкові дефекти

Вакансія – відсутність атомів у вузлах кристалічної решітки, «дірки», що утворилися з різних причин. Утворюється під час переходу атомів із поверхні в навколишнє середовище або з вузлів ґрат на поверхню (межі зерен, порожнечі, тріщини і т. д.), у результаті пластичної деформації, під час «бомбардування» тіла атомами або частинками високих енерґій (опромінювання в циклотроні або нейтронні опромінювання в ядерному реакторі). Концентрація вакансій в значній мірі визначається температурою тіла. Переміщаючись по кристалу, одиночні вакансії можуть зустрічатися і об'єднуватися в девакансії. Скупчення багатьох вакансій може призвести до утворення пор і порожнеч.

Дислокований атом – це атом, що вийшов із вузла ґрат і зайняв місце в міжвузловині. Концентрація дислокованих атомів значно менша, ніж вакансій, оскільки для їх утворення потрібні істотні витрати енерґії. На місці атома, що перемістився, утворюється вакансія.

Домішкові атоми завжди присутні в металі, оскільки практично неможливо виплавити хімічно чистий метал. Вони можуть мати розміри більше або менше розмірів основних атомів і розташовуються у вузлах ґрат або між ними.

Точкові дефекти викликають незначні спотворення ґрат, що може призвести до зміни властивостей тіла (електропровідність, магнітні властивості). Їх наявність сприяє процесам дифузії і протіканню фазових перетворень у твердому стані. Дефекти можуть взаємодіяти.

П

θ

оверхневі дефекти– межі зерен, фраґментів і блоків (рис. 2.2).

Рис. 2.2. Розорієнтація зерен і блоків в металі

Розміри зерен складають до 1000 мкм. Кути розорієнтації (θ) становлять до декількох десятків градусів.

Будова перехідного шару сприяє скупченню в ньому дислокацій. На межах зерен підвищена концентрація домішок, які знижують поверхневу енерґію. Проте й усередині зерна ніколи не спостерігається ідеальної будови кристалічної решітки. Є ділянки, розорієнтовані одна щодо іншої на декілька градусів (θ1). Ці ділянки називаються фраґментами.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]