Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Нурушев Введение в поляризационную 2007

.pdf
Скачиваний:
118
Добавлен:
16.08.2013
Размер:
32.3 Mб
Скачать

12 секций, изготовленных из медной трубки 7 х 1,5 мм2. Среднее число витков в секции равно 7. Электрически все секции соединены последовательно, а вода подается в них параллельно с помощью коллектора /2/. На выходном по воде конце каждой секции установлен термоконтакт для выключения тока магнита при температуре > 70 °С. Система охлаждения рассчитана на обессоленную воду (удельное сопротивление 10 кОм/см) при перепаде давления 5,5 атм. и температуре воды на входе 15 °С. Общий расход воды при указанных условиях составляет 4 м3/ч.

Рис. 3. Конструкция магнита “Джин” установки ПРОЗА: стрелкой указано направление входа пучка; в этом же направлении вставляется криостат мишени; вставка справа показывает разрез магнита по сечению АА

Коротко об источнике питания магнита. Для возбуждения поля магнита применен тиристорный источник стабилизированного тока на базе се-

рийного тиристорного выпрямителя КТУ (Iном = 800 А, Vном = 240 В). Модификация была необходимa для повышения долговременной стабильно-

сти источника до ±0,01 %, а также для уменьшения амплитуды пульсаций напряжения на магните до 0,05 В. Экспериментально было установлено, что при такой амплитуде пульсаций тепловыделение в камере растворения рефрижератора из-за токов Фуко 102 эрг/с при температуре 19 мК, что является допустимым.

Были также решены задачи защиты магнита при отключении воды или повышении ее температуры выше 70 °С. Была достигнута точность установки тока магнита на уровне 0,01 %.

Распределение магнитного поля в зоне размещения мишени было измерено датчиком Холла и прибором ЯМР. При замкнутом магнитопрово-

331

де расстояние между полюсами по вертикали составило 64 мм, а по горизонтали – 62 мм (см. вставку на рис. 2). При раздвинутом магнитопроводе расстояние между полюсами составило 26 см. Задача состояла в том, чтобы в первом состоянии величины поля и его однородности хватало на то, чтобы можно было накачать достаточно высокую поляризацию. Во втором состоянии не требовалась высокая однородность, так же как и высокое поле. Всю идею создания такого простого, дешевого, надежного в эксплуатации магнита удалось реализовать простым механическим перемещением полюсов магнита, не меняя остальных параметров. Магнитное поле в первом случае составило 2,18 Тл, а его неоднородность находилась

на уровне Β / Β ~ 10-4 (рис. 4). Кривая 1 соответствует оптимальной форме полюсов, подобранных с помощью изгибающих винтов. Кривая 2 появилась после тщательного шиммирования поля с помощью фольг из пермаллоя. Такого поля достаточно для накачки приемлемого уровня поляризации за 2 – 3 часа. При раздвинутых полюсах поле составило 0,45 Тл

при неоднородности поля в рабочей зоне мишени Β / Β ~ 10–2. Эти параметры поля позволили достичь тех характеристик мишени, которые приведены в табл. 3. Отметим еще одно преимущество этого магнита, а именно, он обеспечил большой телесный угол. Только вследствие этого удалось успешно выполнить большую программу исследований с зарядо- во-обменными процессами с малыми сечениями.

Общий вес магнита составил 1 т при габаритных размерах

1,05×0,86×0,95 м3.

Более усовершенствованный вариант этого магнита, рассчитанный на длину мишени в 400 мм, был создан и испытан в 1993 г. [Грачев (1993)].

Магнитное поле “Джина” было измерено в зоне размещения мишени. На рис. 4 показана относительная неоднородность магнитного поля вдоль оси мишени, начиная от ее центра.

Ампула мишени (позиция /2/ на рис. 2) объемом 60,3 см3 заполнялась шариками замороженного пропандиола-1,2 (C3H8O2). Диаметр шариков составлял около 2 мм, и коэффициент заполнения ампулы составил 0,6. Пропандиол содержал добавки парамагнитного материала EBA-Cr(V). Пропандиол содержит один поляризуемый протон на примерно 0,1 неполяризуемых, связанных нуклонов. Эффективный фактор разбавления по-

ляризации мишени F =

N связ

составил 0,9 с учетом жидкого

Nсвяз + Nсвоб

гелия и фольг на окнах мишени. Измеренная плотность мишени составила

0,62 г/см3.

332

Рис. 4. Относительная неоднородность магнитного поля “Джина”, измеренная вдоль продольной оси мишени: кривая 1 получена после оптимизации положения полюсных наконечников, кривая 2 – после шиммирования фольгами из пермаллоя; отсчет оси абсцисс ведется от центра мишени

Тепловая изоляция низкотемпературных узлов криостата осуществляется вакуумной рубашкой /19/, герметичным экраном /9/ при температуре 77 К и герметичным экраном /13/ при температуре 1 К. Газообразный 3He охлаждается змеевиком, размещенным в емкости с жидким азотом /10/, а затем поступает в канал газового теплообменника /17/. Угольная ловушка /18/, размещенная в этом кольцевом канале, адсорбирует различные примеси, в том числе водород. Ванна /4/ с жидким гелием 4He, находящаяся при температуре 1 К и под откачкой, обеспечивает конденсацию 3He в конденсоре /14/. Питание ванны /4/ жидким 4He осуществляется из емкости /16/ через охлажденный змеевик /15/. После конденсации жидкий 3He поступает в теплообменник, расположенный в ванне испарения 3He /3/, а затем в противоточный теплообменник /12/. После растворения 3He проходит через ампулу с веществом мишени вдоль каналов противоточного теплообменника и поступает в ванну испарения. Откачка 3He из ванны испарения производится через кольцевой канал /7/, откачка 4He из ванны /4/ осуществляется через кольцевой канал /6/. Вывод испаряющегося 4He из гелиевой емкости /16/ может производиться либо через трубку /11/, либо через змеевик /8/, расположенный в канале /6/. Итак, 3He в канале /17/ охлаждается одновременно с откачиваемым из ванны испарения 3He, откачиваемым из ванны /4/ 4He и испаряющимся из емкости /16/ 4He. Все это позволило экономно расходовать криогенные жидкости в мишени.

333

Тонкостенная трубка из нержавеющей стали диаметром 43 мм /20/ обеспечивает канал для ввода ампулы с веществом. Через этот же канал проходит пучок. После ввода ампулы с веществом и ее герметизации в канал вставляется полая теплоизолирующая пробка /5/. Пробка содержит на пути пучка тонкостенные тепловые экраны из медной фольги толщиной 20 мкм и угольную ловушку, создающую высокий вакуум внутри канала. Такое устройство позволяет быстрый и несложный ввод и съем ампулы с веществом.

Для накачки поляризации используется перестраиваемый СВЧгенератор типа ГДИ-7 с длительной нестабильностью частоты ~ 10–4. Ввиду высокой стабильности СВЧ-генератора не требуется автоматической подстройки частоты, что значительно упрощает СВЧ-систему. При работе СВЧ-генератора производится лишь контроль высокого напряжения блока питания.

Измерение сигнала равновесной поляризации производилось при температуре 0,8 К в магнитном поле 2,1 Тл. Точность измерения составила 3 %. Абсолютная точность измерения поляризации мишени составляет 5 %. Полученные значения поляризации представлены в табл. 3. Меньшее значение поляризации, чем в аналогичных установках, объясняется несколько меньшим значением достигнутого поля (2,1 Тл), чем у других

(2,65 – 2,7 Тл).

 

 

Таблица 3

Поляризованная мишень установки ПРОЗА

 

 

Параметры протонной мишени

Величина параметра

Размер мишени, мм

Диаметр = 19,6, длина = 200

Материал мишени

Пропандиол C3H8O2

Парамагнитная примесь (концентрация), 1020

5

+0,1

спин/см3

Комплекс Cr (

1,80,2 )

Поле накачки/удержания, Тл

2,08/0,4

 

Максимальная поляризация P+/P-, %

+(90±3)/(94±3)

 

ДПЯ, Т (мК)/М(мВ) /вч(ГГц)/ n (моль/с)

0,2/90/56/3·10-2

 

Время накачки до 0,8 Pmax, мин

50

 

Режим заморозки, Т (К)/ (моль/с)

0,02/2·10-3

 

Время распада P+/P, ч

1200/800

 

Полное время смены знака поляризации занимает 2 – 4 ч и производится один раз за двое суток.

§43.3. Поляризованная мишень установки Е704 (FNAL)

Эксперимент Е704 в Фермилаб использовал продольнополяризованную мишень “замороженного” типа, разработанную совмест-

334

но физиками из Сакле (Франции) и АНЛ (США) [Grosnick (1997)]. Мишень состояла из следующих основных частей (рис. 5): а) рефрижератора растворения на смеси 3He – 4He, б) сверхпроводящего соленоида, в) системы накачки поляризации и г) системы измерения поляризации [Chaumette (1989), Chaumette (1990), Chaumette (1991)]. Для удобства обслужи-

вания мишени основные элементы мишени находились на подвижных подставках, позволявших освобождать место на пучке для жидководородной мишени, а также для установки элементов поляриметра Примакова и кулон-ядерной интерференции (КЯИ).

Ампула поляризованной мишени имела размеры: диаметр 3 см и длину 20 см. Она заполнялась шариками замороженного 1-пентанола (C5H12O). Диаметр шариков составлял около 2 мм. Пентанол содержал 6 % по весу воды с добавками в ней парамагнитного материала EBA-Cr(V). Пентанол содержит один поляризуемый протон примерно на шесть не поляризуемых, связанных нуклонов. Эффективный фактор разбавления поляризации мишени составил 8,4 с учетом жидкого гелия и фольг на окнах мишени. По оценкам, шарики заполняли около 98 % общего объема мишени и фактор упаковки составил 0,65. Измеренная плотность мишени составила 0,62 г/см3. Параметр А мишени, используемый при нахождении полных сечений, был равен А = 1040±38 мбарн для протонов. Он определялся как

A = (N Aρl)1 , где NA – число Авогадро, ρ– плотность мишени и l – дли-

на мишени.

Сверхпроводящий соленоид (рис. 5) имел общую длину 86 см и внутренний диаметр 9,4 см. Он потреблял 1,5 л жидкого гелия в час с учетом расходов на сифоны, вентили и другие переходные элементы. Соленоид мог давать максимальное поле 6,5 Тл при токе питания 185 А. В данном эксперименте для накачки поляризации он работал с полем 5 Тл. В этом режиме работы неоднородность магнитного поля по всему объему мише-

ни не превышала Β/Β ±5 10–5. После накачки поляризации и перехода в режим “замороженного спина” соленоид перемещался на 16 см вверх по пучку. Такое перемещение было необходимо, чтобы увеличить полезный полярный угол до 130 мрад в лабораторной системе. Это было нужно для

измерения асимметрии в образовании π0-мезонов в центральной области, т.е. вблизи 90° в с.ц.м. Этому углу в лабораторной системе соответствует угол приблизительно в 100 мрад при начальном импульсе протонного пучка 200 ГэВ/с. При перемещении соленоида магнитное поле в объеме мишени остается величиной 1,9 Тл. Этого поля вполне достаточно для длительного сохранения поляризации в режиме “замороженного спина”.

Рефрижератор растворения 3He – 4He являлся автономным устройством, имел горизонтальную конструкцию и был соосен с пучком. В центре

335

рефрижератора был оставлен свободный канал с минимальным посторонним веществом для прохождения пучка через мишень. Через этот же канал вставлялось специальное приспособление для быстрого монтажа ампулы с мишенью на рабочем месте. Этот монтаж производился, когда рефрижератор был целиком холодным и находился в атмосфере гелия. Насосы откачки работали со скоростью 5500 м3/ч. Температура в замороженном режиме составляла 60 мК и поток 3He составил 4 ммоль/с. В режиме накачки поляризации этот поток составлял 24 ммоль/с.

Температуры измерялись с помощью углеродных сопротивлений, прокалиброванных на германиевых сопротивлениях.

Вся аппаратура была установлена на подставке, которая перемещалась перпендикулярно оси пучка. Во время набора статистики появилась течь в насосе откачки 3He, и в результате не удавался частый реверс поляризации мишени. Время релаксации поляризации мишени составило 50 дней при температуре мишени 80 мК. В качестве генератора микроволновых частот вблизи 70 ГГц служил СВЧ-генератор карсинотрон. В нем предусмотрена возможность тонкой подстройки частоты с тем, чтобы обогащать заселенности разных уровней атома водорода по необходимости. Таким путем производился реверс поляризации мишени при фиксированном магнитном поле.

Измерение поляризации мишени производилось стандартным методом ЯМР на частоте ~ 100 МГц. Детектировались сигналы с трех катушек, размещенных на ампуле поляризованной мишени, равномерно в начале, в середине и конце мишени. В силу наводок средняя катушка не работала в период набора статистики. Сигналы от катушек через систему CAMAC считывались и обрабатывались компьютером. В “замороженной” моде измерения проводились с периодом в несколько часов. Абсолютная величина поляризации находилась путем сравнения накачанного (усиленного) сигнала с равновесным сигналом. Равновесный сигнал измерялся при температуре 1 К и поле 2,5 Тл. За 3 – 4 ч накачки обычно достигалась поляризация свободных протонов PT = 77 % и PT = –80 %. Эти величины получались отдельно от двух крайних ЯМР-катушек, а также измерениями в режиме накачки и “заморозки”. В пределах точности измерения все эти величины совпали. Скорость распада поляризации в “замороженном” режиме составило (1,51±0,16) % в день.

Анализ всех данных по измерениям поляризации показал, что ошибка

в величине поляризации на уровне 2σ составила ±6,5 %. [Hill (1992)]. Эта ошибка включала неточности в температуре и статистическую ошибку при измерениях равновесного ЯМР-сигнала, фон ЯМР-сигнала, линейную и нелинейную нестабильности, пространственную неоднородность в распределении поляризации, также как ошибки экстраполяции и интерполя-

336

ции. Вклады большинства этих ошибок были симметричными и некоррелированными.

Положительное направление поляризации в данном эксперименте означало большую заселенность низко лежащего зеемановского уровня. Другими словами, положительная поляризация мишени означает, что она направлена вдоль поля соленоида. Так как поле соленоида при накачке было направлено против импульса пучка, то положительная поляризация также направлена против импульса пучка. Реверс поляризации осуществлялся один раз в сутки с тем, чтобы снизить уровень систематических ошибок, связанных с реверсом поляризации пучка.

Рис. 5. Поляризованная мишень эксперимента Е704 в Фермилабе: показаны криостат растворения, собственно мишень и сверхпроводящий соленоид в положении для накачки поляризации; пучок входит слева

Эта поляризованная мишень специально создавалась для измерения разности полных сечений в чистых спиновых состояниях, во взаимодействии продольно-поляризованных пучков протонов и антипротонов с энергией 200 ГэВ с продольно-поляризованными протонами мишени. Этот эксперимент был успешно реализован. В параллель с этим экспери-

ментом были выполнены измерения двухспиновой асимметрии ALL(π0) в

337

инклюзивном образовании π0-мезонов в центральной области при столкновений продольно-поляризованных протонов и антипротонов с продоль- но-поляризованными протонами мишени [Groshnick (1997)].

§43.4. Поляризованная мишень установок Е143 и Е153 (SLAC)

Эта мишень взята в качестве иллюстрации того, какие ТТПМ используются на электронных пучках, и какие высокие интенсивности могут выдерживать поляризованные мишени, и какие при этом возникают про-

блемы [Crabb (1995a)].

В разделе о поляризованном электронном пучке мы приводили в качестве примера линейный ускоритель SLAC. Там же в таблице указаны параметры пучка в эксперименте Е143. Электронный пучок с интенсивностью 5 1011 c–1 падал на поляризованную мишень. В качестве мишени использовалась твердотельная криогенная мишень с непрерывной накачкой поляризации. Материалами мишени служили соединения аммиака 15NH3 и 15ND3. Чтобы мишень не подвергалась сильному радиационному повреждению, пучок расширялся на входе в мишень до размеров рабочей ампулы. Упрощенная схема мишени представлена на рис. 6.

Рис. 6. Аммиачная поляризованная мишень эксперимента Е143 в SLAC

Криостат мишени размещался вертикально и проходил внутри катушек сверхпроводящего магнита. Рефрижератор с непрерывной откачкой 4He работал при температуре 1 К. Эта мишень имеет оригинальную конструкцию: внутри рефрижератора размещены две рабочие аммиачные мишени 15NH3 и 15ND, а также пустая мишень и ампула с углеродной мишенью располагались друг над другом. Такая конструкция давала замет-

338

ный выигрыш во времени набора статистики. Любая из перечисленных выше мишеней могла быть введена быстро в пучок с помощью механического привода и дистанционно управляемого мотора. Внутри пробника проходили также волноводы для СВЧ-генератора, сигнальные кабели от ЯМР-катушек и волновод для передачи СВЧ-мощности от генератора к мишени.

Сверхпроводящий магнит создавал требуемое однородное манитное поле в 5 Тл в рабочем объеме мишени. Подробное описание системы содержится в работе [Crabb (1995b)].

Используемый в мишени аммиак облучался на разных электронных пучках в сосуде с жидким аргоном. Типичная доза облучения составляла 1017 электронов/см2. После облучения производилась накачка поляризации. Для протонов накачка давала 95 % поляризации в согласии с предыдущими измерениями [Crabb (1990)]. Однако при работе в эксперименте Е143 с пучком максимально достигнутая поляризация составила всего 80 %. Это произошло из-за специфики размещения материалов мишеней. Дейтерированный аммоний был размещен выше ампулы с аммиаком (15NH3), ближе к СВЧ-генератору. В результате часть волны от генератора, предназначенная для аммиака, поглощалась в 15ND3 сразу после волновода.

Что касается поляризации дейтрона, то накачка сразу после облучения дала всего 13 %. Однако было обнаружено, что при облучении того же материала при температуре 1 К величина накачанной поляризации увеличивается по крайней мере раза в два [Boden (1991)]. В конкретных условиях эксперимента Е143 фактор увеличения составил три, как видно на рис. 7.

Дейтронная поляризация дополнительно усиливалась при использовании сигнала частотной модуляции. На рис. 7 момент приложения частотной модуляции отмечен стрелкой с надписью “включение ЧМ“ в районе времени (ось абсцисс) 1800. В районе времени 1805 было сделано неправильное включение частотной модуляции и скорость накачки поляризации уменьшилась.

В течение эксперимента в результате радиационного повреждения поляризация мишени уменьшалась. Для восстановления поляризации применяли метод отжига при температуре 85 К. Внимательное изучение циклов отжига и радиационного облучения показали, что этот процесс является сложным. Например, в случае протона наблюдались два цикла спада поляризации. Первый цикл соответствует очень быстрому спаду поляризации в начале облучения большой дозой радиации. Через некоторое время этот цикл сменяется более медленным спадом. В случае дейтрона есть только один медленный цикл. Наблюдалось также, что ампула из тефлона, в которой содержится аммиак, также поляризуется под действием излуче-

339

ния. Измеренная поляризация ампулы достигала 8 %, и в поляризацию протона вводилась необходимая коррекция.

Рис. 7. Накачка поляризации дейтрона (в дейтерированном аммиаке) в зависимости от времени; показано также влияние на этот процесс приложенной дополнительно частотной модуляции

Еще одним практически важным результатом таких исследований является обнаружение поляризации атома азота 15N. И хотя обе поляризации растут со временем накачки, однако кривые ведут себя по-разному в зависимости от того, подается микроволновая частота или нет. Здесь надо тщательно разобраться с тем, чтобы правильно поправить экспериментальные данные на поляризацию азота.

Как показали эти исследования, облученный аммиак, подвергающийся непрерывной СВЧ-накачке, является радиационно-стойким материалом до интенсивности пучков до 1011 частиц/с. Водородосодержащие органические материалы таких облучений не выдерживают.

§43.5. Поляризованная мишень установки EMC (ЦЕРН)

Эксперимент EMC (European Muon Collaboration) по глубоко неупру-

гому рассеянию (ГНР) проводился на мюонном пучке с энергией вблизи 200 ГэВ. Для измерения структурной функции нуклона g1(x,Q2) нужны продольно-поляризованные пучки и мишени. Мюонный пучок по природе получается продольно-поляризованным. Его большие поперечные размеры (около 5 см), его низкая интенсивность ( 3 107 мюоновцикл) и малое сечение взаимодействия мюона с нуклоном привели к необходимости создания продольно-поляризованной мишени наибольшого размера, ко- гда-нибудь применявшейся в эксперименте [Gabathuler (1984)]. К тому же

340