Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Kuklin_-_Detali_mashin.doc
Скачиваний:
1187
Добавлен:
08.06.2015
Размер:
15.04 Mб
Скачать

11.2. Основы теории зубчатого зацепления

Профили зубьев пары колес должны быть сопряженными, т. е. заданному профилю зуба одного колеса должен соответствовать вполне определенный профиль зуба другого колеса. Чтобы обеспечить посто­янство передаточного числа, профили зубьев нужно очертить такими кривыми, которые удовлетворяли бы требованиям основной теоремы зацепления.

Основная теорема зацепления. Для доказательства теоремы рассмот­рим пару сопряженных зубьев в зацеплении (рис. 11.6). Профили зубьев шестерни и колеса касаются в точке S, называемой точкой зацепления. Центры вращения О, и 02 расположены на неизменном расстоянии а„ друг от друга. Зуб шестерни, вращаясь с угловой скоростью со,, ока­зывает силовое действие на зуб колеса, сообщая последнему угловую скорость ω2. Проведем через точку S общую для обоих профилей ка­сательную ТТ и нормаль NN. Окружные скорости точки S относитель­но центров вращения О1 и 02

Разложим v1 и v2 на составляющие v\ и v'2 по направлению нормали NN и составляющие v"1 и v"2 по направлению касательной ТТ. Для обеспечения постоянного касания профилей необходимо соблю­дение условия V1 = v2, в противном случае при v, < v2 зуб шестер­ни отстанет от зуба колеса, а при v\ > v'2 произойдет врезание зубь­ев. Опустим из центров О1 и 02 перпендикуляры 01В и 02С на нор­маль NN.

Нормаль NN пересекает линию центров 01 02 в точке П, называ­емой полюсом зацепления. Из подобия треугольников 02ПС и 0,ПΒ

01C/OlB=01n/Oln = rw2/rwl. Сравнивая отношения (11.1) и (11.2), получаем

Таким образом, основная теорема зацепления формулируется так: для обеспечения постоянного передаточного числа зубчатых колес профи­ли их зубьев должны быть очерчены по кривым, у которых общая нормаль NN, проведенная через точку касания профилей, делит расстояние между центрами 01 02 на части, обратно пропорциональные угловым скоростям.

Полюс зацепления П сохраняет неизменное положение на линии центров 01 02, поэтому радиусы rw1 и rw2 также неизменны.

Окружности радиусов rw1 и rw2 называют начальными. При вращении зубчатых колес начальные окружности перекатываются друг по другу без

скольжения, о чем свидетельствует равенство окружных скоростей со,гю, = aty^, полученное из формулы (11.3).

Из множества кривых, удовлетворяющих требованиям основной теоремы зацепления, практическое применение в современном маши­ностроении получила эвольвента окружности, которая:

а) позволяет сравнительно просто и точно получить профиль зуба в процессе нарезания;

б) без нарушения правильности зацепления допускает некоторое изменение межосевого расстояния аw (это изменение может возник­ нуть в результате неточностей изготовления и сборки, деформаций деталей передачи при работе).

Эвольвента окружности (рис. 11.7). Эвольвентой окружности называют кри­вую, которую описывает точка S пря­мой NN, перекатываемой без скольже­ния по окружности радиуса rь. Эту ок­ружность называют эволютой или основ­ной окружностью, а перекатываемую прямую NNпроизводящей прямой.

Характер эвольвентного зубчатого зацепления определяется свойствами эвольвенты (см. рис. 11.7):

1. Производящая прямая NN являет­ ся одновременно касательной к основ- Рис- "-7- Схема образования

эвольвенты нои окружности и нормалью ко всем

производимым ею эвольвентам.

  1. Две эвольвенты одной и той же основной окружности эквиди-станты (т. е. расстояние между эвольвентами в направлении нормали везде одинаковое).

  2. С увеличением радиуса rh основной окружности эвольвента ста­новится более пологой и при rь -> °° обращается в прямую.

  3. Радиус кривизны эвольвенты в точке S2 равен длине дуги S0B основной окружности. Центр кривизны эвольвенты в данной точке находится на основной окружности.