Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Курс лекций К.Севастьянова, М.Карнаухова Общая химия.docx
Скачиваний:
3431
Добавлен:
17.02.2016
Размер:
10.04 Mб
Скачать

4. Основные классы неорганических соединений

4.1. Классификация веществ

Все вещества делятся на простые (элементарные) и сложные. Простые вещества состоят из одного элемента, сложные – из двух и более элементов. Простые вещества разделяются на металлы, неметаллы и инертные газы.

Металлы имеют характерный «металлический» блеск, обладают ковкостью, тягучестью, могут прокатываться в листы или вытягиваться в проволоку, обладают хорошей теплопроводностью и электрической проводимостью. При комнатной температуре все металлы (кроме ртути) находятся в твердом состоянии.

Неметаллы не обладают характерным для металлов блеском, хрупки, очень плохо проводят теплоту и электричество. Некоторые из них при обычных условиях газообразны.

Сложные вещества делят на органические и неорганические (минеральные). Органическими принято называть соединения углерода, за исключением простейших соединений углерода (CO, CO2, H2CO3, HCN и их солей и др.); все остальные вещества называются неорганическими.

Сложные неорганические соединения классифицируются как по составу, так и по химическим свойствам (функциональным признакам). По составу они, прежде всего, подразделяются на двухэлементные, или бинарные, соединения (оксиды, сульфиды, галогениды, нитриды, карбиды, гидриды) и многоэлементные соединения; кислородсодержащие, азотсодержащие и т. п.

По химическим свойствам неорганические соединения подразделяются на четыре основных класса: оксиды, кислоты, основания, соли.

4.2. Оксиды

Оксидами называются сложные вещества, состоящие из двух элементов, один из которых кислород (Cr2O3,K2O,CO2 и т. д.). Кислород в оксидах всегда двухвалентен и имеет степень окисления, равную -2.

По химическим свойствам оксиды подразделяются на солеобразующие и несолеобразующие(безразличные:CO,NO,N2O).Солеобразующие оксиды подразделяются на основные, кислотные и амфотерные.

Основными называются оксиды, взаимодействующие с кислотами или кислотными оксидами, с образованием солей:

CuO + 2HCl=CuCl2 + H2O,

MgO + CO2 = MgCO3.

Образование основных оксидов характерно для металлов с невысокой степенью окисления (+1, +2).

Оксиды щелочных (Li, Na, K, Rb, Cs) и щелочноземельных металлов (Ca, Sr, Ba, Ra) взаимодействуют с водой, образуя основания. Например:

Na2O + H2O = 2NaOH,

CaO + H2O = Ca(OH)2.

Большая часть основных оксидов с водой не взаимодействует. Основания таких оксидов получают косвенным путем:

a) CuO + 2HCl=CuCl2 + H2O;

б) CuCl2 + 2KOH = Cu(OH)2 +2KCl.

Кислотными называются оксиды, взаимодействующие с основаниями или с основными оксидами с образованием солей. Например:

SO3 + 2KOH = K2SO4 + H2O,

CaO + CO2 = CaCO3.

К кислотным оксидам относятся оксиды типичных неметаллов -SO2, N2O5, SiO2, CO2 и др., а также оксиды металлов с высокой степенью окисления ( +5, +6, +7, +8 )- V2O5, CrO3, Mn2O7 и др..

Ряд кислотных оксидов (SO3 , SO2 , N2O3 , N2O5 , CO2 и др.) при взаимодействии с водой образуют кислоты:

SO 3 + H2O = H2SO4,

N2O5 + H2O = 2HNO3.

Соответствующие кислоты других кислотных оксидов (SiO2 , TeO2 , TeO3 , MoO3 , WO3 , и др. ) получают косвенным путем. Например:

а) SiO2 + 2NaOH = Na2SiO3 + H2O

б) Na2SiO3 +2HCl= H2SiO3 + 2NaCl

Один из способов получения кислотных оксидов – отнятие воды от соответствующих кислот. Поэтому кислотные оксиды иногда называют ангидридами кислот.

Амфотерными называют оксиды, образующие соли при взаимодействии, как с кислотами, так и с основаниями, т. е. обладающие двойственными свойствами – свойствами основных и кислотных оксидов. Например:

SnO + H2SO4 = SnSO4 + H2O,

SnO + 2KOH + H2O = K2 [Sn(OH)4],

ZnO + 2KOH = K2ZnO2 + H2O3.

К числу амфотерных оксидов относятся: ZnO, BeO, SnO, PbO, Al2O3, Cr2O3, Fe2O3, Sb2O3, MnO2 и др.

Следует отметить, что в соответствии с изменением химической природы элементов в периодической системе элементов (от металлов к неметаллам) закономерно изменяются и химические свойства соединений, в частности, кислотно-основная активность их оксидов. Так, в случае высших оксидов элементов 3 периода в ряду: Na2O, MgO, Al2O3, SiO2, P2O5, SO3, Cl2O7 - по мере уменьшения степени полярности связи Э-О (уменьшается ЭО; уменьшается отрицательный эффективный заряд атома кислорода) ослабляются основные и нарастают кислотные свойства оксидов: Na2O, MgO - основные оксиды; Al2O3 – амфотерный; SiO2, P2O5, SO3, Cl2O7 - кислотные оксиды (слева направо кислотный характер оксидов усиливается).

Способы получения оксидов:

1. Взаимодействие простых веществ с кислородом (окисление):

4Fe + 3O2 = 2Fe2O3,

S + O2 = SO2.

2. Горение сложных веществ:

CH4 + 2O2 = CO2 + 2H2O,

2SO2 + O2 = 2SO3.

3. Термическое разложение солей, оснований, кислот:

CaCO3  CaO + CO2,

Cd(OH)2  CdO + H2O,

H2SO4  SO3 + H2O.

Номенклатура оксидов. Названия оксидов строятся из слова “оксид” и названия элемента в родительном падеже, который соединен с атомами кислорода. Если элемент образует несколько оксидов, то в скобках римскими цифрами указывается его степень окисления (с.о.), при этом знак с. о. не указывается. Например,MnO2– оксид марганца (IV),MnO– оксид марганца (II). Если элемент образует один оксид, то его с. о. не приводится:Na2O– оксид натрия.

Иногда в названиях оксидов встречаются приставки ди-, три-, тетра- и т.д. Они обозначают, что в молекуле этого оксида на один атом элемента приходится 2,3,4 и т.д. атома кислорода, например, CO2– диоксид углерода и т.д.