Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Питання та відповіді на БХ.docx
Скачиваний:
3774
Добавлен:
06.03.2016
Размер:
2.7 Mб
Скачать

4*. Гліколітична оксидоредукція: субстратне фосфорилювання та човникові механізми окислення гліколітичного надн.

в аеробних умовах відбувається окисне декарбоксилювання пірувату доацетил-КоА, який у подальшому окислюється до СО, та Н,О в циклі Кребса; НАДН, що утворився при окисленні гліцеральдегід-3-фосфату, віддає свої відновлювальні еквіваленти на дихальний ланцюг мітохондрій через спеціальні човникові механізми; - в анаеробнихумовах (або в умовах гіпоксії) реокислення гліколітичного НАДН відбува¬ється за рахунок дії лактатдегідрогенази, яка відновлює піруват до лактату; течія лактат-дегідрогеназної реакції в даному напрямку генерує НАД+, що знову використовується для окислення гліцеральдегід-3-фосфату і подальшого накопичення лактату як про¬дукту анаеробного гліколізу. Така послідовністьреакцій найбільш характерна для інтенсивно працюючихскелетних м'язів; крім скелетних м'язів та еритроцитів, клітини деяких інших органів та тканин (головного мозку, шлунково-кишкового тракту, мозкового шару нирок, сітківки та шкіри) частково задовольняють свої енергетичні потреби за рахунок анаероб¬ного гліколізу, утворюючи молочну килоту. Човникові механізми. Суть процесу полягає в тому, що НАДН, який утворюється в цитозолі не може самостійно прникнути в мітохондрії для окислення, тому він відновлює у цтиозолі певну речовину, яка йде в мітохондрії і там окислюється (замість НАДН), відновлюючи внутрішньомітохондріальний НАД+, і знову повертається в цитозоль; цикл повторюється. Малат-аспартатна човникова система. У цитозолі відновлюється оксалоацетат до малату. Малат іде в мітохондрії і там окислюється знову до оксалоацетату, відновлюючи НАД+. Гліцерофосфат на човникова система. У цитозолі відновлюється діоксиацетонфосфат до гіцерол-3-ф, який іде в мітохондрії і там окислюється до діоксиацетонфосфату.

41. Порівняльна характеристика біоенергетики аеробного та анаеробного окислення глюкози, ефект Пастера.

У процесі анаеробного окислення глюкози витрачається 2 молекули АТФ (при фосфорилюванні глюкози з утворенням глюкозо-6-фосфату і при перетворенні фруктозо-6-фосфату на фруктозо-1,6-дифосфат), а синтезується 4 АТФ (по дві у реакціях гліцеральдегід-3-фосфат → 3-фосфогліцерат та фосфоенолпіруват → піруват). Різниця у затраченій і утвореній кількості АТФ складає +2 молекули. Сумарне рівняння: С6Н12О6 + 2АДФ + 2Фн→ 2С3Н4О3(С3Н6О3) + 2АТФ. При аеробному окисленні глюкози (повне окислення до СО2 і Н2О): генерується 2АТФ на етапі аеробного гліколізу; гліколітичний НАДН за рахунок окислення в мітохондріях дає 2НАДН*3АТФ= 6АТФ; окисне декарбоксилювання ПВК дає 2НАДН, які в мітохондріях окислються з утворенням 2НАДН*3АТФ= 6АТФ; в ЦТК 2 ацетил-КоА (із попереднього декарбоксилування ПВК) дають 2ац-КоА*12АТФ=24АТФ. Сумарне рівняння: С6Н12О6 + 6О2 + 38АДФ + 38Фн→ 6СО2 + 6Н2О + 38АТФ. Ефект Пастера – не утворення лактату в присутності О2, через те, що в умовах активного клітинного дихання пригнічується активність фосфофруктокінази і піруваткінази.

42. Фосфоролітичний шлях розщеплення глікогену в печінці та м'язах. Регуляція активності глікогенфосфорилази.

С6Н10О5)n + Н3РО4→ г-1-ф + (С6Н10О5)n-1, Ė глікогенфосфорилаза. Розщеплення розгалужених фрагментів – Ė аміло-1,6-глікозидаза; г-1-ф→ г-6-ф, Ė фосфоглюкомутаза. Утворений г-6-ф у печінці перетворюється на вільну глюкозу (Ė г-6-фосфатаза) і йде в кров, а у м`язах, де немає цього ферменту – використовується для власних потреб клітини. Регуляція: адреналін, глюкагон→ рецептор→ G-білок→ аденілатциклаза (активується)→ синтез цАМФ із АТФ→ цАМФ-залежна протеїнкіназа (активується)→ Кіназа фосфорилази фосфорилюється за допомогою АТФ (активується)→ фосфорилаза b (глікогенфосфорилаза) фосфорилюється за допомогою АТФ (активується) – перетвор. на фосфорилазу а→ глікоген+Фн→г-1-ф→г-6-ф→глюкоза.

Гликогенфосфорилаза (glycogen phosphorylase) - Фермент, катализирующий расщепление гликогена до глюкозы, что связано с процессами сокращения мышц (мышечная гликогенфосфорилаза), контролем уровня глюкозы в крови(печеночная гликогенфосфорилаза), межклеточной передачи энергии в условиях аноксии (гликогенфосфорилаза мозга). Соответственно, у млекопитающих гликогенфосфорилаза представлена тремя изоферментами, кодируемыми у ряда видов несцепленными генами (например, у мыши гены гликогенфосфорилазы локализованы на хромосомах 19, 12 и 2). Каждый из изоферментов представлен гомодимером (молекулярная масса около 100 кД), могут образовывать гетеродимеры друг с другом.