Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Реале Дж., Антисери Д. - Зап. фил. Т. 4. От Ром. до наш. дней.pdf
Скачиваний:
322
Добавлен:
07.03.2016
Размер:
20.61 Mб
Скачать

Янко Слава (Библиотека Fort/Da) || http://yanko.lib.ru

332

2. РАЗВИТИЕ ФИЗИКИ В XX ВЕКЕ

2.1. Общие вопросы

Развитие физики в XIX веке закончилось крахом механистической программы исследования. Нынешняя физика, отказавшаяся от линейных моделей, характеризуется фундаментальным программным дуализмом. Первая программа возникла в первые десятилетия нашего столетия — релятивистская программа Эйнштейна. А в конце прошлого века с открытием явления радиации возникли квантовая теория и соответствующая исследовательская программа. Эти программы хотя и пересекаются, все же относятся к разным уровням наблюдения. Обе отталкиваются от классической физики в вопросе рассмотрения физических величин в пределах нашего повседневного опыта. Только квантовая теория необходима для изучения феноменов на микроскопическом уровне (атомы, ядерные и субъядерные феномены), а теорию относительности интересуют астрономические скорости и расстояния. Два этих направления

650 Развитие наук в XX веке

поначалу развивались независимо друг от друга. Исследование ядра и его составляющих продвигалось вместе с квантовой теорией.

2.2. Эйнштейн и теория относительности

На рубеже двух веков предпринята не одна попытка преодолеть разрыв теорий Максвелла и Ньютона. Последняя принадлежит А. Пуанкаре на основе классического принципа относительности Лоренца. Идея эфира в ней сохранена, как и законы движущихся относительно друг друга прямолинейным и равномерным образом систем. Работы Лоренца и Максвелла появились в конце XIX— начале XX веков.

Однако в 1905 г. А. Эйнштейн (1879—1955) опубликовал историческую статью «К электродинамике движущихся сред», где были сформулированы принципы частной теории относительности. «Явления в электродинамике, — писал он, — так же, как и в механике, не обладают свойствами, относящимися к идее абсолютного покоя... законы электродинамики и оптики распространяются на все системы отсчета, включая механические». Эйнштейн предложил в качестве постулата другой тезис, согласно которому «свет распространяется в пустом пространстве с определенной скоростью, которая не зависит от движения испускающего свет тела». Первый постулат элиминирует эфир, второй видимым образом ему противоречит. Однако Эйнштейн переосмысливает традиционные понятия пространства и времени. Контраст с привычным опытом демонстрируют следующие теоремы:

длина тела, находящегося в движении, больше длины покоящегося тела;

два одновременных по отношению к наблюдателю явления могут быть неодновременными один по отношению к другому;

длина стержня связана с направлением его движения: масса тела увеличивается с увеличением скорости.

Наконец, знаменитая формула E = 2 связала массу с энергией. Все эти выводы были подкреплены множеством экспериментов. Переход от классической механики к частной теории относительности был назван Куном научной революцией, ибо произошла глобальная смена основания теории. Только через одиннадцать лет Эйнштейн предложил более обобщенную, чем прежняя, теорию. Законы физики не меняются в любой системе отсчета, даже в системе, движущейся с ускорением, если учитываются гравитационные эффекты, — такова суть общей теории относительности. Эйнштейн констатирует, что масса тела остается постоянной, если она

Эйнштейн; Планк 651

измерена согласно общему закону гравитации (второму закону динамики: инерционная масса равна гравитационной массе).

Отсюда следует возможность соотнесения любого эффекта ускорения с соответствующими гравитационными полями, что меняет геометрическую структуру пространства. Получается, что любая физическая проблема решается, в конечном счете, через изучение геометрических свойств пространства. Общая теория относительности включает в себя как элемент частную теорию относительности, сохраняя все ее выводы и присоединяя к ним новые, вытекающие из новых экспериментальных данных. Среди последних — точные траектории движения планет, искривление светового луча в гравитационном поле и смещение спектральных линий в зоне света, испускаемого звездами большой массы. Так был открыт путь развития «нормальной» науки со все более мощной разработкой математического аппарата, с одной стороны, и, с другой — с проверкой теоретических конструкций экспериментальными данными, что всегда давало позитивный результат. Из новейших экспериментов на эту тему наиболее интересными представляются те, что связаны с изучением гравитационных волн космического происхождения.

2.3. Квантовая теория

Другой путь исследований — изучение взаимодействия материи и радиации. Термин «квант» связывают с именем М. Планка (1858—1947). Это проблема «черного тела» (абстрактное математическое понятие для обозначения объекта, аккумулирующего всю энергию и превращающего ее в тепло). Функция, выражающая энергию абсолютно «черного тела», изменяющего температуру, оказалась несовместимой с термодинамикой, а значит, и классической механикой.

Решение Планка состояло в гипотезе, что энергия выделяется и аккумулируется материей не в форме непрерывной радиации, а только множеством порций определенного количества, пропорционального частоте

Дж. Реале и Д. Антисери. Западная философия от истоков до наших дней. От романтизма до наших дней (4) — Издательство «Пневма», С-Петербург, 2003, 880 с, ил.