Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Быков- гистология( общая)

.pdf
Скачиваний:
45491
Добавлен:
21.03.2016
Размер:
13.05 Mб
Скачать

Рис. 12-7. Ультраструктурная организация остеобласта (ОБЛ) и остеоцита (ОЦ). ОБЛ вырабатывают неминерализованное межклеточное вещество - остеоид (ОИ) и обеспечивают его минерализацию с образованием обызвествленного межклеточного вещества (ОМВ). МВ - микроворсинки, КГ - комплекс Гольджи. ОБЛ связан с ОЦ отростками, образующими щелевое соединение. Тело ОЦ лежит в лакуне (Л) в ОМВ 8 окружении коллагеновых фибрилл (КФ), его отростки (ОО) - в костных канальцах (КК).

Минерализация органического матрикса остеобластами

осуществляется двумя основными механизмами:

(1) путем отложения кристаллов гидроксиапатита из перенасыщенной внеклеточной жидкости вдоль фибрилл коллагена. Секретируемые остеобластами неколлагеновые белки контролируют ход минерализации. В частности, костный сиалопротеин и остеонектин усиливают связывание минеральных веществ и регулируют рост кристаллов гидроксиапатита. Особую роль в процессах формирования начального ядра отложения кристаллов (нуклеации) приписывают некоторым протеогликанам, занимающим зоны зазоров между молекулами тропоколлагена в коллагеновых фибриллах. Эти протеогликаны связывают кальций, удерживая его в зонах зазоров; в дальнейшем они разрушаются фермен-

- 361 -

тами, а с коллагеном в области зазоров связываются фосфопротеины. Их фосфат реагирует с ионами кальция, образуя первые кристаллы минералов. Процесс протекает с участием щелочной фосфатазы, обеспечивающей дефосфорилирование и локальное повышение концентраций фосфатных ионов. Это способствует образованию новых кальциевофосфатных преципитатов в области зон зазора, быстро трансформирующихся в первые кристаллы гидроксиапатита, которые растут в промежутках между коллагеновыми фибриллами.

(2) посредством секреции особых матричных пузырьков - мелких (100-200

нм) округлых мембранных структур, которые образуются и выделяются в матрикс остеобластами. Эти пузырьки содержат высокие концентрации фосфата кальция и щелочной фосфатазы, им свойственна высокая активность других мембранных ферментов и липидов. Микросреда внутри матричных пузырьков способствует отложению первых кристаллов гидроксиапатита. В этом процессе важную роль приписывают щелочная фосфатазе, отщепляющей фосфат, связанный с органическими веществами, который далее участвует в образовании кристаллов гидроксиапатита. Разрушаясь, пузырьки служат ядрами, вокруг которых растут кристаллы гидоксиапатита. В дальнейшем очаги минерализации увеличиваются в размерах и сливаются друг с другом, превращая новообразованный остеоид в зрелый костный матрикс.

В результате минерализации 90-95% солей кальция включаются в состав коллагеновых волокон и лишь 5-10% находятся в остальной части матрикса.

Скорость минерализации остеоида может существенно варьировать. В

норме минерализация осуществляется вскоре после образования остеоида, занимая у человека примерно 15 сут. При высокой скорости обновления костной ткани выработка остеоида опережает его минерализацию и его слой отчетливо выявляется между остеобластами и минерализованным матриксом. Такая картина наблюдается, в частности, при быстром росте костей у плодов, их перестройке после переломов и при некоторых заболеваниях.

Нарушение процессов минерализации кости происходит при снижении в крови уровня кальция (вследствие недостаточного поступления с пищей, нарушения всасывания) или фосфата (обычно при усиленном выделении с мочой). Результатом угнетения минерализации является размягчение и деформация костей - остеомаляция (от греч. osteon -кость и malakos - мягеий). В период роста организма аналогичные нарушения наблюдаются при рахите - заболевании, вызванном дефицитом

- 362 -

витамина D, точнее его биологически активной формы - кальцитриола [1,25(ОН)2-D3], который стимулирует всасывание кальция и фосфата в кишке. Рахит излечивается введением витамина D с пищей, а также пребыванием на солнечном свете (поскольку витамин D синтезируется в коже под влиянием ультрафиолетовых лучей).

Кальций в кристаллах гидроксиапатита может замещаться другими элементами; наиболее опасно его замещение радиоактивными стронцием (90Sr), плутонием (259Pu) или другими продуктами расщепления урана. Эти элементы могут попадать в костную ткань из внешней среды при ее радиоактивном заражении. Включаясь в состав костной ткани и длительно в ней находясь, они вызывают сильное внутреннее облучение организма, повреждая, в первую очередь, костный мозг.

Регуляция деятельности остеобластов осуществляется гормонами и другими биологически активными веществами благодаря наличию на их плазмолемме специфических рецепторов паратгормона, витамина D, глюкокортикоидов, половых гормонов (андрогенов, эстрогенов), кальцитонина, тиреоидных гормонов, факторов роста, инсулина, простагландинов. Они реагируют также на факторы, продуцируемые остеокластами и секретируют вещества, обусловливающие их собственную активацию (аутокринные регуляторы).

Неактивные (покоящиеся) остеобласты (клетки, выстилающие кость)

образуются из активных остеобластов и в покоящейся кости покрывают 80-95% ее поверхности. Они имеют вид уплощенных клеток (толщиной 0.1-1 мкм и диаметром до 50 мкм) с веретеновидными (на срезе) ядрами (см. рис. 12-6). Органеллы редуцированы, однако рецепторы к различным гормонам и факторам роста, а также способность реагировать на них сохраняются. Между покоящимися остеобластами и поверхностью кости имеется тонкий (0.1 -0.5 мкм) слой неминерализованного матрикса - эндостальная мембрана, который защищает костную поверхность от возможной атаки остеокластов. Эндостальная мембрана отличается от остеоида своей структурной организацией, биохимическим составом, а также тем, что никогда не минерализуется. Предполагают, что покоящиеся остеобласты сохраняют связи друг с другом и с остеоцитами, образуя систему, регулирующую минеральный обмен костной ткани. Они играют важную роль в инициации перестройки костной ткани (см. ниже).

Остеобласты служат источником развития двух типов опухолей костной ткани - доброкачественной остеомы (в которой клетки сохраняют способность не только к выработке органического матрикса, но

- 363 -

и к его минерализации) и злокачественной - остеосаркомы (клетки которой больше напоминают остеогенные клетки-предшественники и утрачивают способность к минерализации матрикса).

Остеоциты - основной тип клеток зрелой костной ткани. Они образуются из остеобластов, когда те в результате своей синтетической активности и минерализации остеоида оказываются окруженными со всех сторон обызвествленным матриксом (см. рис. 12-6). При этом остеобласты утрачивают способность к делению, уменьшаются в размерах, их органеллы редуцируются, а интенсивность синтетических процессов резко падает. Уплощенные тела остеоцитов лишены полярности и находятся в узких костных полостях - лакунах, где они окружены коллагеновыми фибриллами и узкой полоской остеоида (см. рис. 12-7). Их отростки (числом до нескольких сотен) располагаются в узких костных канальцах и связывают соседние клетки благодаря щелевым соединениям между ними (через которые передаются низкомолекулярные питательные вещества и ионы).

Функция остеоцитов состоит в поддержании нормального состояния костного матрикса (и баланса Са и Р в организме). При этом они не только вырабатывают его компоненты, но, по-видимому, обладают способностью к ограниченному растворению матрикса, что приводит к увеличению объема лакун (остеоцитарный остеолиз). Это явление у здоровых людей отмечается в 3- 4% лакун; оно усиливается в несколько раз при повышенных уровнях паратгормона или недостатке витамина D. Остеоциты воспринимают механические напряжения, возникающие внутри костной ткани; они, очевидно, чувствительны и к электрическим потенциалам, образующимся в матриксе при воздействии деформирующих сил. Реагируя на эти и другие сигналы, остеоциты запускают локальный процесс перестройки костной ткани, ограниченный мелким участком скелета.

Остеокласты - многоядерные гигантские клетки (точнее говоря, симпластические структуры, образующиеся вследствие слияния моноцитов), обладающие подвижностью и осуществляющие разрушение, или резорбцию (от лат. resorptio - рассасывание) костной ткани. Так как резорбция кости сопровождается освобождением связанного с ее матриксом кальция, эти клетки играют важнейшую роль в поддержании кальциевого гомеостаза. Они располагаются в образованных ими углублениях на поверхности костной ткани (резорбционных лакунах, или лакунах Хаушипа) поодиночке или небольшими группами (см. рис. 12-6), способны проделывать в костной ткани глубокие ходы (тоннели).

Достигают крупных размеров (20-100 мкм) и содержат до 20-50 ядер (на отдельном срезе обычно видны 6-10). Цитоплазма - ацидофиль-

- 364 -

ная, пенистая, с высоким содержанием лизосом, митохондрий, пузырьков (рис. 12-8). Комплекс Гольджи образован множественными диктиосомами. Маркерными ферментами этих клеток служат особая (тартратнечувствительная) форма кислой фосфатазы (КФ), карбоангидраза и АТФаза. Другими важными маркерами этих клеток являются рецепторы кальцитонина и витронектина. Остеокласты - резко поляризованные клетки. В активном остеокласте участок его цитоплазмы, прилежащий к кости и не содержащий ядер и большинства органелл, образует многочисленные складки клеточной мембраны (гофрированный край). В отличие от исчерченной каемки, состоящей из микроворсинок, выпячивания цитоплазмы остеокласта в области гофрированного края - вариабельные структуры, постоянно вытягивающиеся и сокращающиеся. По обеим сторонам гофрированного края имеются гладкие краевые светлые зоны - участки плотного прикрепления его цитоплазмы к кости.

Рис. 12-8. Ультраструктурная организация остеокласта. Цитоплазма остеокласта образует многочисленные складки клеточной мембраны - гофрированный край (ГК) - участок обеспечивающий резорбцию кости. Резорбция включает деминерализацию матрикса в зоне резорбции (ЗР) и переваривание его органических компонентов в лизосомах (стрелки). Плотное прикрепление цитоплазмы остеокласта к кости осуществляется в области краевых светлых зон (СЗ). МВ - микроворсинки, КГ - комплекс Гольджи. Я – ядро.

- 365 -

Рис. 12-9. Механизм резорбции костной ткани остеокластом. Остеокласт прикрепляется к поверхности кости в участке резорбции; особо плотное прикрепление образуется в области краевых светлых зон (СЗ). Закисление содержимого резорбционной лакуны (РЛ), обусловливающее растворение минерального компонента матрикса, осуществляется путем экзоцитоза пузырьков с кислым содержимым (ПКС), сливающихся с плазмолеммой остеокласта в области гофрированного края (ГК), а также благодаря действию протонных насосов (АТФазы мембраны ГК), накачивающих ионы Н+ в РЛ. Источником протонов служит реакция между С02 и Н20, катализируемая ферментом карбоангидразой (КА). Органические компоненты матрикса разрушаются лизосомальными ферментами, выделяемыми в лакуну. Продукты резорбции костной ткани удаляются из лакуны путем их утечки (У) в области СЗ (механизм "разгерметизации" лакуны) или везикулярным транспортом (ВТ) через цитоплазму клетки.

Механизм резорбции костной ткани остеокластами. Разрушение костной ткани остеокластами протекает циклически: периоды высокой активности у каждой клетки повторно сменяются периодами покоя. Процессы разрушения сочетаются с активным фагоцитозом и всасыванием в кровь продуктов деградации и включают несколько этапов (рис. 12-9):

1)прикрепление остеокластов к резорбируемой поверхности кости

обеспечивается рядом адгезивных взаимодействий, опосредованных интегринами и белками матрикса (в частности, остеопонтином, витронектином). При этом в остеокласте наблюдается выраженная перестройка элементов цитоскелета. Особое плотное прикрепление к костной ткани остеокласты образуют в области краевых светлых зон, тем самым "герметизируя” зону резорбции, и препятствуя в дальнейшем утечке из нее протонов;

2)закисление содержимого лакун осуществляется двумя механизмами: (а) путем выделения кислого содержимого вакуолей в лакуну;

- 366 -

(б) благодаря действию протонных насосов (АТФазы мембраны гофрированного края), накачивающих ионы Н+ в лакуну;

3)резорбцию минерального компонента матрикса, которая осуществляется вследствие воздействия на него кислого содержимого лакуны;

4)растворение органических компонентов матрикса вследствие действия лизосомальных ферментов остеокластов, секретированных ими в лакуну и активирующихся при низких значениях pH. Высказывается мнение о том, что остеокласты осуществляют лишь деминерализацию матрикса, а разрушение органических компонентов обеспечивается макрофагами;

5)удаление продуктов разрушения костной ткани осуществляется двумя механизмами: (а) их утечкой из лакуны после отделения плазмолеммы от поверхности кости (механизм "разгерметизации" лакуны), (б) поглощением продуктов остеокластами, и их везикулярным транспортом через цитоплазму клетки с последующим выделением в области ее апикального полюса.

Регуляция активности остеокластов обеспечивается общими и местными факторами.

Общие факторы включают гормон околощитовидных желез (паратогормон), 1,25 гидроксивитамин D3 (активируют остеокласты и увеличивают их число, стимулируя слияние мононуклеарных предшественников). Гормон щитовидной железы кальцитонин и женские половые гормоны (эстрогены) угнетают активность остеокластов. Кальцитонин связывается со специфическими рецепторами на поверхности остеокластов, а паратгормон, рецепторы которого на остеокластах отсутствуют, оказывает на них непрямое действие, по-видимому, опосредованное остеобластами.

Местные факторы, вызывающие активацию остеокластов в конкретных участках костной ткани, остаются малоизученными. Получены сведения о том, что механические напряжения создают локальные электрические поля, к которым чувствительны эти клетки. Роль посредников при этом, возможно, выполняют коллагеновые волокна, обладающие свойствами пьезоэлектрнков. Показано, что деятельность остеокластов стимулируется особым фактором, активирующим остеокласты (ФАО), который продуцируется лимфоцитами. На нее оказывают влияние простагландины, вырабатываемые макрофагами и остеобластами. На образование и активность остеокластов влияют также ряд интерлейкинов (ИЛ-1, ИЛ-3, ИЛ-6) и факторов роста.

- 367 -

Хемотаксические факторы, привлекающие остеокласты или их предшественники, очевидно, выделяются неактивными остеобластами. Последние при этом смещаются, обнажая поверхность кости и, секретируя ферменты, способствуют удалению поверхностного слоя неминерализованного матрикса, выполняющего защитную роль.

В процессе резорбции костной ткани остеокласты, в свою очередь, выделяют ТФРβ и ряд других факторов роста, которые индуцируют дифференцировку предшественников остеобластов и инициируют активность зрелых остеобластов.

Заболевания, связанные с нарушением деятельности остеокластов, в

большинстве обусловлены общим или локальным увеличением их числа и (или) активности, развивающимися под влиянием общих или местных факторов и приводящими к общему или местному усилению резорбции костной ткани.

Гиперпаратиреоз (повышенная продукция паратгормона околощитовидными железами) характеризуется быстрым разрушением костной ткани многочисленными остеокластами, что клинически проявляется патологическими переломами костей.

Болезнь Педжета (деформирующий остоз) - тяжелое заболевание, при котором периодически отмечаются эпизоды локального резкого повышения активности остеокластов в различных участках скелета, вызванные неизвестными факторами. В результате развиваются переломы и деформации костей, а в поврежденных участках в дальнейшем благодаря усиленной деятельности остеобластов компенсаторно происходит быстрое и избыточное образование низкоорганизованной и механически непрочной костной ткани.

Миеломная болезнь (см. главу 9) сопровождается появлением участков разрушения костной ткани вследствие местной стимуляции деятельности остеокластов лимфотоксином, который вырабатывают измененные плазматические (миеломные) клетки в костном мозге.

Остеопетроз, в отличие от отмеченных выше заболеваний, характеризуется нарушением резорбции кости вследствие дефекта активности остеокластов. В результате кость приобретает ненормально высокую плотность и деформируется, а пространства, занимаемые костным мозгом, резко сокращаются, что приводит к развитию тяжелой анемии.

Гистологическое исследование биоптатов костной ткани

производится для диагностики локальных и системных поражений скелета. В последнем случае биоптаты обычно получают из гребня подвздошной кости для выявления аномалий ее строения, оценки состояния

- 368 -

матрикса, содержания и активности отдельных клеточных элементов. Такое исследование позволяет не только поставить диагноз различных системных заболеваний, но и осуществлять контроль эффективности проводимой терапии.

Классификация костных тканей

Классификация костных тканей основана на различиях строения межклеточного вещества, в частности, степени упорядоченности расположения в нем коллагеновых волокон. Выделяют (1) грубоволокнистую (ретикулофиброзную) костную ткань и (2) пластинчатую костную ткань.

ГРУБОВОЛОКНИСТАЯ КОСТНАЯ ТКАНЬ

Грубоволокнистая (ретикулофибро зная) костная ткань (рис. 12-10)

характеризуется неупорядоченным расположением коллагеновых волокон в матриксе. Она отличается относительно небольшой

Рис. 12-10. Грубоволокнистая костная ткань. Коллагеновые волокна (на препарате не прослеживаются) расположены неупорядоченно в костном матриксе (КМ). Лакуны с телами остеоцитов (ОЦ) не имеют закономерной ориентации. ОЦ связаны посредством своих ветвящихся отростков, которые проходят в костных канальцах (КК).

- 369 -

механической прочностью и обычно образуется тогда, когда остеобласты формируют остеоид с высокой скоростью. В норме это происходит при образовании костной ткани у плода, в патологических условиях - при заживлении перелома кости или при болезни Педжета. Лакуны с телами остеоцитов не имеют закономерной ориентации. Содержание остеоцитов в грубоволокнистой костной ткани выше, чем в пластинчатой, а в ее матриксе больше основного вещества и меньше минеральных компонентов. В ходе нормального развития и при регенерации костной ткани грубоволокнистая костная ткань постепенно замещается пластинчатой. У взрослого она сохраняется лишь в заросших швах черепа и участках прикрепления некоторых сухожилий к костям.

ПЛАСТИНЧАТАЯ КОСТНАЯ ТКАНЬ

Пластинчатая костная ткань у взрослого образует практически весь костный скелет. Ее минерализованное межклеточное вещество состоит из особых костных пластинок толщиной 3-10 мкм, каждая из которых содержит параллельно расположенные тонкие коллагеновые волокна. Волокна соседних пластинок лежат под углом друг к другу, что способствует равномерному распределению действующих на них нагрузок. Пластинки в кости образуют нескольких систем (см. ниже). Лакуны, содержащие тела остеоцитов, располагаются между пластинками упорядоченно, а костные канальцы, в которых находятся отростки клеток, пронизывают пластинки под прямыми углами.

КОСТЬ КАК ОРГАН

Кость как орган обладает сложной архитектоникой и тканевым составом. Функционально ведущей тканью кости служит пластинчатая костная ткань, снаружи и со стороны костномозговой полости она покрыта соединительнотканными оболочками (надкостницей и эндостом). Кость содержит костный мозг, кровеносные и лимфатические сосуды и нервы. В кости как органе различают компактное (кортикальное) вещество кости и губчатое (трабекулярное) вещество, которые образованы пластинчатой костной тканью и плавно переходят друг в друга.

Компактное вещество (кортикальная кость) - сравнительно плотное,

тяжелое (составляет 80% массы скелета взрослого человека); мягкие ткани занимают в нем менее 10% объема. Оно образует диафизы трубчатых костей и формирует наружный слой костной ткани

- 370 -

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]