Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Елизаров Е.Д., Основы организации мышления.doc
Скачиваний:
14
Добавлен:
02.11.2018
Размер:
1.78 Mб
Скачать
    1. § 2. Крушение констант

В философии пройденный путь называется еще и восхождением от абстрактного к конкретному. Мы ищем истину, между тем истина,— гласит эта древняя наука,— всегда конкретна. И тот факт, что полученный результат это уже совсем не та пустота, с которой начинался наш путь, лишь подтверждает его право на существование.

Но продолжим анализ.

Мы увидели, что всякое «качество» обладает своим «количеством», и наоборот: любое «количество» применимо только к определенному кругу вещей, в результате чего «дваплюсдваравночетыре» имеет лишь ограниченную справедливость. Мы согласились и с тем, что каждое новое «количество», которое обнимает собой уже приведенный к какому-то единому основанию круг явлений, все-таки обязано подчиняться основополагающим законам математики. Но полной ясности все же не наступило,— и не только потому, что на все расчеты оказывает воздействие неуловимая «дельта качества». Дело в том, что базовые математические соотношения могут быть безупречными только в том случае, если одноименные доли любого «количества» будут равны друг другу. А вот всегда ли они равны, мы с уверенностью сказать не можем.

Обратимся к известному.

В 1720 году немецкий физик Габриель Д.Фаренгейт (1686-1736) предложил принять в качестве двух фиксированных точек температурной шкалы температуру человеческого тела и температуру замерзания какой-нибудь смеси. Несколько позднее, в 1742 году, теперь уже шведский астроном и физик Андерс Цельсий (1701-1744) предложил использовать для маркировки точки кипения и замерзания воды. Первой он приписал значения 0, второй — 100 градусов. Именно эта, только перевернутая, шкала теперь и принята повсеместно. Используются, правда и другие (того же Фаренгейта, Кельвина), но все они легко приводятся к шкале Цельсия.

Но вот вопрос: все ли градусы (или, вернее сказать, то, что стоит за ними) этих шкал в точности равны друг другу, равен ли градус, измеренный вблизи одной из критических точек, градусу, измеренному вблизи какой-то другой? Ведь если это не так, расчеты могут содержать в себе математическую ошибку.

Вопрос отнюдь не риторичен, он настоятельно требует точного и конкретного ответа. Ведь в действительности для измерения температуры во всем диапазоне ее известных сегодня значений подходящих средств до сих пор нет. Под подходящими средствами имеется в виду некий единый «термометр», одинаково пригодный для измерений во всем интервале, то есть и в области абсолютного нуля и в области «зазвездных» температур. На самом деле мы пользуемся целой системой измерительных инструментов, каждый из которых способен давать удовлетворительные (удовлетворительные?) результаты только для определенных долей «полного количества» этого феномена, иными словами, лишь в сравнительно узком диапазоне температур. Состыковать же результаты измерений, выполненных разными инструментами, так чтобы они ничем не противоречили друг другу, далеко не всегда удается. В особенности это касается тех случаев, когда сопоставлению подлежат значительно отстоящие друг от друга участки условно единой температурной шкалы.

В 1893 г. немецкий физик Вильгельм Вин (1864— 1928) обнаружил, что по спектру излучения физического тела можно определить его температуру. Изучением солнечного спектра удалось установить, что на поверхности Солнца она составляет 6000 градусов. Были установлены температуры поверхности и других звезд; у Сириуса, например, она равна 11000, а у Альфы Южного Креста, самой яркой звезды созвездия Южный Крест,— 21 000. Но уместен вопрос: в самом ли деле градус в пределах базиса шкалы Цельсия — это одно и то же, что градус на поверхности Солнца, Сириуса, Альфы Южного Креста и вообще в любой точке (хотя бы) Галактики? Можно ли утверждать, что 20 миллионов градусов (ориентировочная температура недр нашей звезды) — это ровно, т.е. с точностью до любого знака после запятой, в 200 тыс. раз больше температуры кипения воды, а так называемый абсолютный ноль — ровно на 273,16 меньше температуры ее замерзания?

Впрочем, строго говоря, нет уверенности и в том, что градус, измеренный вблизи точки замерзания воды, в точности равен градусу, измеренному вблизи точки ее кипения. Более того, остается сомнение не только в строгости измерений, но и в том, что мы сумели понять самое существо того таинственного начала, которое пытаемся измерять с помощью различных температурных шкал и условных «термометров»; подлинная природа феномена температуры еще и сегодня может хранить в себе немало загадок.

Но вспомним мысль Максвелла о том, что для построения всей системы единиц измерений достаточно двух величин – длины и времени. Поэтому обратимся к ним.

Почти до самого конца XIX века никому и в голову не могла прийти мысль о возможности деформации пространства, о замедлении времени, словом, обо всех тех чудесах, которые порождались необходимостью хоть как-то объяснить отрицательный результат уже упомянутых здесь опытов Альберта Абрахама Майкельсона (1852-1931), американского физика, автора остроумных экспериментов по определению скорости света. Эти эксперименты впервые были проведены им в 1881 г. и впоследствии в 1887 г. (совместно с Морли). Они были призваны найти абсолютную систему отсчета любого движения в мировом пространстве.109 Однако обнаружилось, что таковой не существует, что можно было истолковать и в пользу вращения всей Вселенной, включая Солнечную систему, вокруг нашей собственной планеты.

Объясняющая гипотеза была выдвинута в 1892 г. ирландским физиком Джорджем Фицджеральдом (1851-1901), который показал, что отрицательные результаты опыта можно объяснить, если принять, что размеры тел, движущихся со скоростью v, сокращаются в направлении их движения в (1 — )2 раз, где  = v/c (с — здесь обозначает скорость света). Впоследствии (1904) Хендрик Антон Лоренц (1853—1928), известный голландский физик, лауреат Нобелевской премии за 1902 год, предложил ее теоретическое обоснование. Он исходил из того, что положения атомов и молекул в любой линейке определяются электростатическими силами; между тем кулоновские поля движущихся зарядов испытывают точно такое же сокращение, что и должно было объяснять сокращение, о котором говорил Фицджеральд.

Вглядимся в математический аппарат преобразований Лоренца-Фицжеральда, который в неизменном виде вошел в частную теорию относительности Эйнштейна. В этой теории единицы длины (l), времени (t) и массы (m) перестают быть тем, чем они были в рамках классической физики. Все эти начала оказываются самым тесным образом связанными со скоростью движения измеряемых объектов относительно измерителя (v) и деформируются в строгом соответствии с ее изменениями. Так,

l = l0  (1 — 2),

t = t0 /  (1 — 2),

m = m0 / (1 — 2),

Легко видеть: чем выше скорость движения тела, тем меньше подкоренное выражение; с неограниченным же приближением к скорости света оно обращается в бесконечно малую величину. Меж тем деление любого числа на бесконечно малую делает его бесконечно большим. Деление же на ноль вообще теряет смысл, ибо то, что получается в результате, лежит за пределами разума (нам еще придется говорить о том, что может лежать за «краем света»; эта операция равносильна попытке заглянуть именно туда).

Некоторую трудность может вызвать вопрос о том, что именно является энергетическим «донором» ускорения. Понятно, что основных вариантов — два. В одном случае донором выступает потенциал внешнего объекта, в другом расходуются собственные резервы движущегося тела. (Впрочем, возможны и промежуточные решения, когда в придании ускорения участвуют оба.) Сообщение ускорения предполагает затрату определенного количества энергии. При этом мы можем конвертировать в энергию собственную массу системы. Простейший и самый наглядный пример — это бензин в баке автомобиля. Правда, к теории относительности это не имеет отношения, что же касается релятивистской физики, то ею не возбраняется и «конвертация» самого бензобака. Если донор внешний, в энергию со всем его содержимым обращается «бензобак» внешней массы, если внутренний — своей собственной. При этом общая энергетика единой системы «энергетический донор — движущееся тело» должна быть независимой от того, что является донором. Поэтому на сообщение заранее заданного ускорения должна конвертироваться одна и та же доля массы или расходоваться эквивалентная ей энергия, как в случае внешнего источника энергии, так и в случае расхода своего собственного потенциала.

Выразим энергетические соотношения с помощью простого графика, одной координатной осью которого является скорость (от нуля до скорости света), другой масса (от нуля до единицы). Таким образом, зависимость между достигаемой скоростью и расходуемой (конвертируемой) массой предстанет в виде кривой, исходящей из центра координат и оканчивающейся в точке, одна проекция которой на ось скоростей совпадает со скоростью света, другая, на ось масс, — с единицей.

Легко понять, что любая промежуточная проекция на каждую из координатных осей этого графика даст представление о второй величине. Иначе говоря, если мы заранее определим ту скорость, которую собираемся сообщить нашему объекту, то перпендикуляр, отброшенный на другую ось координат, покажет нам, какую долю начальной массы энергетического «донора» придется конвертировать в энергию для того, чтобы сообщить ему требуемое ускорение. И наоборот: если мы заранее определим ту долю начальной массы, которую готовы конвертировать в энергию, проекция на другую координатную ось покажет нам максимальную скорость, которую (на минуту забыв о неизбежных энергетических потерях) в принципе можно сообщить телу.

График будет одним и тем же как для внешнего источника энергии, так и для внутреннего. Разница лишь в следующем. В первом случае под единицей должна пониматься масса того внешнего объекта, которому отпускается роль энергетического «донора». Им может быть и вся Вселенная, и в этом случае речь пойдет о ее совокупной массе. Во втором — собственная масса того тела, которому и нужно сообщить ускорение.

В соответствии с известными положениями теории относительности сообщение максимальной скорости (с) может быть достигнуто в случае расходования собственного потенциала тела — за счет обращения в энергию всей его массы, в случае внешнего источника — за счет конвертирования всей массы Вселенной. Другими словами, скорость света может быть достигнута только тогда, когда в нуль обращается либо собственная масса тела, либо полная масса Вселенной. Ясно, что ни тот, ни другой вариант физически невозможны, как невозможен выход за пределы материи. Но как некий математический предел они вправе учитываться.

В любом случае предельная скорость, которую практически можно сообщить телу, будет далека от скорости света даже там, где его масса будет составлять бесконечно малую, но все же отличную от нуля величину. Поэтому здесь речь может идти лишь о всем спектре промежуточных значений между нулем и этой по сегодняшним понятиям предельной физической величиной. Но именно потому, что наш график описывается математической кривой, мы обязаны заключить: полное равенство одноименных отрезков каждой из осевых шкал не достигается ни в одном — даже сколь угодно узком — интервале значений. В том же случае, когда сопоставляются отрезки, тяготеющие к противоположным полюсам координатных осей, они могут отличаться друг от друга на много порядков.

Здесь-то со всей наглядностью и обнаруживается существо нашего вопроса: «с какого края?» Анализируя получаемые кривые, мы обязаны сделать вывод: «два плюс два» может только неограниченно стремиться к «четырем», да и то лишь в том случае, когда суммируются смежные отрезки измерительных шкал, расположенные у самого начала отсчета. При этом смежные отрезки, в свою очередь, должны неограниченно стремиться к нулю. Полный спектр результатов измерения длины будет простираться от «четырех» до нуля. Все то же, исчисленное для времени, даст результат, простирающийся от «четырех» до бесконечности. Иными словами, с абсолютной точностью измеренный итог (в пределах всего диапазона значений скорости) составит сколько угодно, только не «четыре»!

Это означало крах всех традиционных представлений. Ученый мир был готов к чему угодно, но два плюс два были обязаны равнять четырем при любых обстоятельствах, как при любых обстоятельствах килограмм, метр, секунда были обязаны равняться самим себе. Меж тем менялись и они, так что же оставалось делать с теми единицами измерения, которые определялись лишь с их помощью. В общем, необходимо было пересматривать первоосновы…