Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Lektsia__7.doc
Скачиваний:
19
Добавлен:
18.12.2018
Размер:
154.62 Кб
Скачать

Принцип относительности в механике: Принцип относительности Галилея, преобразование Галилея.

Итак, мы выяснили, что в зависимости от того, в какой неинерциальной системе отсчета мы будем записывать движение материальной точки, будет и видоизменятся форма записи основного закона динамики, т.е. фактически неинерциальные системы отсчета обладают « индивидуальностью ».

А что может сказать про инерциальные системы отсчета? Интуитивно понятно, что описание движения материальных тел в инерциальных системах отсчета должно быть одинаковым. И это связанно с тем, что в классической механики справедлив механический принцип относительности ( принцип относительности Галилея ):

законы динамики одинаковы во всех инерциальных системах отсчета.

Для доказательства этого принципа рассмотрим две системы отсчета, движущихся друг относительно друга с постоянной скоростью ( см. рис. 7.5 )

Инерциальную систему К ( с координатами x, y, z), условно будем считать неподвижной, а систему К/ (с координатами x/, y/ , z/ ) будим считать движущейся относительно К равномерно и прямолинейно со скоростью U=const. Отсчет времени начала движения начнем с момента, когда начало координат

Рис. 7.5. К выводу преобразований Галилея.

обеих систем совпадают.

Пусть в произвольный момент t расположение этих систем друг относительно друга соответствует схеме приведенной на рис. 7.5. Полагаем, что вектор скорости направлен вдоль 00/, так что радиус- вектор проведенный из 0 в 0/ может быть найден из соотношения : .

Найдем связь между координатами произвольной точки А в обеих системах. Из рисунка 7.5. видно, что

( 7.21 ).

или в проекциях на оси координат:

x=x/+Uxt ; y = y/ + Uyt ; z = z/ +Uzt ( 7.22 ).

Уравнения ( 7.21 ) и ( 7.22 ) носят название преобразований Галилея.

В частном случае когда система К/ движется со скоростью U вдоль положительной оси Х система К ( в начальный период времени оси координат совпадают ), преобразования координат Галилея будут иметь вид:

Z=Z/ ; Y = Y/ ; X = X/ + Ut . .

Необходимо особо подчеркнуть, что в классической механике предполагается независимость хода времени от относительного движения систем отсчета, т.е. фактически преобразование координат Галилея (7.22) дополняется уравнением:

t = t/ ( 7.23 )

Соотношения ( 7.22 ) и ( 7.23 ) справедливы лишь в случае классической механики, когда U<<c ( с = 3*108 м/с - скорость света), а при скоростях сравнимых со скоростью света, преобразования Галилея заменяются более общими преобразованиями Лоренца.

Получим из соотношения (7.21) правила сложения скоростей в классической механике. Для этого продифференцируем выражение ( 7.21 ) по времени:

( 7.24 ).

Посмотрим, как будут соотносится ускорения материальной точки в системах отсчёта К и К/ , движущихся друг относительно друга равномерно и прямолинейно. Для этого продифференцируем по времени выражение ( 7.24), учитывая, что = соnst :

. ( 7.25 )

Из выражения ( 7.25 ) следует, что ускорение точки А в системе отсчета К и К/, движущихся друг относительно друга равномерно и прямолинейно, одинаково. Следовательно, если на точку А другие тела не действуют ( а=0 ), то и =0, т.е. система К/ также будет инерциальной ( точка движется относительно нее равномерно и прямолинейно или покоится ).

Таким образом, на основе соотношения ( 7.25 ) можно дать и другую формулировку механического принципа относительности:

Уравнения классической динамики при переходе от одной инерциальной системы отсчета к другой не изменяются, т. е. являются инвариантными по отношению к преобразованиям координат.

Наглядную формулировку « классического » принципа относительности дал Галилей:

Никакими механическими опытами, проведенными в данной инерциальной системе отсчета, нельзя установить, покоится ли она или движется равномерно и прямолинейно.

Гравитационная масса. Эквивалентность инертной и гравитационной масс.

Рассмотрим еще один аспект "классической" механики, касающийся вопроса о возможных типах силовых воздействий между материальными телами и их взаимосвязи.

Существует четыре основных вида взаимодействия, к которым сводятся все известные силы во Вселенной:

  • гравитационное ( оно определяет крупномасштабные события Вселенной – это самое слабое взаимодействие);

  • электромагнитное (удерживает электроны в атомах, связывает атомы в молекулах и кристаллах);

  • сильное взаимодействие (связывает нуклоны – объединяет протоны и нейтроны в ядрах всех элементов). Это самое сильное взаимодействие, но оно ограничено весьма короткими расстояниями ( внутриатомными );

  • слабое взаимодействие (обуславливает силы, действующие между легкими частицами: лептонами между собой и более тяжелыми частицами ); слабое взаимодействие, проявляющееся при β - распаде радиоактивных ядер, имеет очень малую дальность.

В «классической» или «ньютоновской» механики постулируется ( допускается без доказательства ), что между всеми телами действуют силы одной природы – силы тяготения.

Однако, если принять во внимание закон всемирного тяготения Ньютона, когда тела непосредственно не взаимодействуют друг с другом, и его «механические» законы, когда речь идет о силовом взаимодействии тел при непосредственном ( механическом ) контакте друг с другом, то оказывается, что в этих двух случаях масса тела определяется по - разному:

А) Масса тела можно определить путем измерения испытываемого телом ускорения под действием известной силы:

Мин. = F / a (7.26).

Определяемая таким путем масса, обозначенная М ин, известна под названием инертной массы.

Б) Массу можно также определить, измеряя силу ее тяготения к другому телу, например, к Земле:

, ( 7.27 ).

где Мз - масса Земли, G- гравитационная постоянная, определяемая подобным способом масса, обозначаемая Мгр. , носит название гравитационной массы.

Эксперименты показывают, что в пределах точности

измерений инертные массы всех тел пропорциональны

их гравитационным массам.

Простейший опыт- это выяснение того, что все тела вблизи поверхности Земли падают с одинаковым ускорением ( опыты Галилея ).

Тот экспериментальный факт, что не разу не при каких условиях не было обнаружено никаких различий между инертной и гравитационной массами тела, наводит на мысль, что тяготение в известном смысле может быть эквивалентным ускорению. Поэтому для гравитационной и инертной масс в классической физике был сформулирован принцип эквивалентности.

Все физические явления в поле тяготения происходят примерно так же, как и в соответствующем поле сил инерции, если напряженности обоих полей в соответствующих точках пространства совпадают, а прочие начальные условия для рассматриваемых тел одинаковы ( формулировка А. Эйнштейна ).

Пример - никакой эксперимент по изучению движения тел в равноускоренном лифте не может отделить однородное поле тяготения от однородного поля сил инерции.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]