Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
идеальные ответы по химии.docx
Скачиваний:
7
Добавлен:
22.11.2019
Размер:
833.21 Кб
Скачать

2.Энтропия. 2 закон термодинамики. 3 закон термодинамики.

Энтропия (S) – термодинамическая функция состояния, которая служит мерой беспорядка (неупорядоченности) системы. Больцман определил энтропию как термодинамическую вероятность состояния (беспорядок) системы W. Размерность энтропии 1 моля вещества совпадает с размерностью газовой постоянной R и равна Дж∙моль–1∙K–1. Изменение энтропии в необратимых и обратимых процессах передается соотношениями ΔS > Q / T и ΔS = Q / T. Например, изменение энтропии плавления равно теплоте (энтальпии) плавления ΔSпл = ΔHпл/Tпл Для химической реакции изменение энтропии аналогично изменению энтальпии. Энтропия вещества или системы тел при определенной температуре является абсолютной величиной. Энтропия зависит от:

  1. Агрегатного состояния вещества. Энтропия увеличивается при переходе от твердого к жидкому и особенно к газообразному состоянию (вода, лед, пар).

  2. Изотопного состава (H2O и D2O).

  3. Молекулярной массы однотипных соединений (CH4, C2H6, н-C4H10).

  4. Строения молекулы (н-C4H10, изо-C4H10).

  5. Кристаллической структуры (аллотропии) – алмаз, графит.

стремление системы к беспорядку проявляется тем больше, чем выше температура. Произведение изменения энтропии системы на температуру TΔS количественно оценивает эту тенденцию и называется энтропийным фактором. S возрастает при переходе в-ва из кристаллического состояния в жидкое и из жидкого в газообразное, при растворении кристаллов, при расширении газов, при хим.взаимодействиях, приводящих к увеличению числа частиц, и прежде всего частиц в газообразном состоянии. Напротив, все процессы в результате которых упорядоченность системы возрастает(конденсация, полимеризация, сжатие, уменьшения числа частиц), сопровождаются уменьшением энтропии.

В изолированных системах энтропия самопроизвольно протекающего процесса увеличивается ΔS > 0 (второй закон термодинамики).

Энтропия равна нулю только у идеального кристалла при абсолютном нуле (третий закон термодинамики).

3. Химическое равновесие. Константа равновесия. Химическое равновесие и катализ. Факторы, влияющие на смещение химического равновесия. Принцип Ле-Шателье.

Состояние системы, когда в ней протекает 2 проитвоположнонаправленных процесса с одинаковой скоростью называется хим равновесием.

при постоянной Т отношение произведения равновесных концентраций продуктов реакции в степенях стехиометрических коэффициентов к произведению равновесных конц исх в-в в степенях стехиометричесикх коэффициентов есть величина постоянная и назыв константой равновесия данной реакции. Зависит только от температуры.

Физический смысл константы равновесия: показывает полноту протекания р-ии (∆G показывает глубину протекания)

Кр –> ∞ - необратимая, Кр=0 – не реагирует, ∆G = -RTlnKравн

Равновесные концентрации исх в-в – концентрация в-ва, не прореагир. к моменту равновесия.

Равновесные концентрации продуктов р-ии – та концентрация в-в, кот образовались к моменту равновесия.

Равновесный закон действующих масс: отношения произведения молярных концентраций продуктов к произведению молярных концентраций реагентов взятых в степенях равных стехиометрическим коэффициентам есть величина постоянная при данной температуре =Kр.

Факторы, влияющие на смещение равновесия:

  1. Концентрация: увеличение концентрации исходных веществ ускоряет прямую реакции и смещает равновесии вправо (в сторону продуктов реакции), увеличение концентрации продуктов реакции увеличивает объем образовавшейся реакции и смещает равновесие влево.

  2. Давление: если давление повышается, то равновесие смещается в сторону уменьшения объема реагирующей смеси, и если давление понижается то равновесие смещается в сторону увеличения объема реагирующей смеси.

  3. Температура: при повышении температуры возрастает скорость как прямой так и обратной реакций, но в большей степени ускоряются эндотермические реакции, характеризующиеся большей величиной энергии активации.

Принцип Ле-Шателье: Если на систему, находящуюся в равновесии, оказать какое либо воздействие, то в результате протекающих в ней процессов равновесие сместится в таком направлении, которое уменьшит указанное воздействие.

Катализ – явление изменения скорости реакции под действием катализаторов. В присутствии катализатора меняется путь, по которому проходит суммарная реакция, образуются другие переходные состояния, с иными энергиями активации, а поэтому изменяется и скорость химической реакции. Катализатор увеличивет скорость как прямой так и обратной химической реакции, поэтому на смещние химического равновесия он не

влияет.

Билет 17

1Основные виды хим. связи. Количественные характеристики хим. связи: длина связи м\у атомами, энергия связи, валентные углы. Электронная теория валентности Льюиса-Косселя. Ионный и ковалентный характер связи.

Химическая связь – состояние взаимодействующих атомов, характеризующееся минимумом энергии.Ковалентная – связь осуществляемая за счет образования электронной пары, принадлежащей обоим атомам(Н2, С12). Ионная – связь осуществляемая за счет электростатического притяжения между ионами(NaCl). Водородная – это связь между полож. заряженным атомом водорода и отрицательно заряженным атомом другой молекулы. Металлическая – связь когда валентные электроны металлов слабо связаны со своими ядрами и могут легко отрываться от них.Энергией связи называют ту энергию, которую необходимо затратить для ее разрыва. При этом молекула должна находиться в основном (невозбужденном) состо­янии и при 0оК. Эта величина определяет прочность связи. Чем больше энергия, затрачиваемая на разрыв связи, тем прочнее связь. Единица измерения энергии связи — кДж/моль. Например, энергия связи Н—Н в молекуле водорода равна 436 кДж/моль. Если в молекуле несколь­ко одинаковых связей, то, очевидно, для разрушения каждой следующей потребуется различная энергия и в таком случае говорят о средней энергии связи. Величина энергии химических связей в большинстве соединений колеблется в пределах 100-1000 кДж/моль. Энергия связи в ряду однотипных молекул постепенно изменяется. Например, энергия связи Н-Г в ряду гало-геноводородов HF, HC1, HBr, HI уменьшается с 565,7 кДж/моль у HF, до 294,7 кДж/моль у HI. Зная энергию связей в молекуле, можно судить также о ее ре­акционной способности и производить различные термо­химические расчеты.Длиной связи называют среднее расстояние между ядрами, отвечающее минимуму энергии системы.

В ряду аналогичных по составу молекул длины связей также изменяются закономерно. Например, в ряду HF, НС1, HBr, HI длина связи увеличивается с возрастанием размера атома и соответственно равна 0,091; 0,127; 0,141; 0,160 нм. В молекулах, близких по химической природе, одного гомологического ряда, длины связей между ядрами элементов мало различаются и могут считаться практи­чески постоянными (например, длины связей С - С в пре­дельных углеводородах и т. д.).

Кроме того, на длину связи влияет ее кратность, ко­торая определяется числом электронных пар, связываю­щих два атома. С увеличением кратности связей происходит их упрочнение, межъядерные расстояния уменьша­ются. Так, длина связи С—С равна 0,154 нм, С = С - 0,135 нм и С ≡ С - 0,121  нм.

Валентные углы- это углы между связями в молекуле. Их схематически можно представить как углы между прямыми линиями, соединяющими ядра атомов в молекуле. Эти воображаемые прямые, проведенные через два ядра, называют линиями связи. Величины валентных углов зависят от природы атомов и характера связи. Простые двухатомные молекулы всегда имеют линейную структуру. Трехатомные и более сложные молекулы могут обладать различными конфигурациями. Например, в мо­лекуле воды угол между линиями связи Н—О равен 104,5°, а в сходной молекуле сероводорода валентный угол между связями составляет 92°.Электронная теория валентности Льюиса-КосселяВ 1915г. немецкий физик Коссель дал объяснение химической связи в солях, а в 1916 году американский учёный Льюис предложил трактовку химической связи в молекулах. Они исходили из представлений о том, что атомы элементов обладают тенденцией к достижению электронной конфигурации благородных газов (полного заполнения внешнего электронного слоя). Представления Косселя и Льюиса получили названия электронной теории валентности.Валентность элементов главных подгрупп Периодической системы зависит от числа электронов, находящихся на внешнем электронном слое. Поэтому эти внешние электроны принято называть валентными. Для элементов побочных подгрупп в качестве валентных электронов могут выступать как электроны внешнего слоя, так и электроны внутренних подуровней.2.Изолированные неизолированные сис-мы. Функции состояния, уравнения состояния. Работа, теплота, энергия. Температура. Внутренняя энергия.Термодинамические системы могут быть открытыми и закрытыми. Открытые системы обмениваются с окружающей средой и веществом, и энергией. Закрытые системы делятся на неизолированные и изолированные. Неизолированные системы не обмениваются с окружающей средой веществом, но обмениваются энергией. Изолированные системы не обмениваются ни веществом, ни энергией.Энтальпия(H)- термодинамический потенциал, характеризующий состояние системы в термодинамическом равновесии при выборе в качестве независимых переменных давления, энтропии и числа частиц,энергия, которая доступна для преобразования в теплоту при определенных температуре и давлении..Энтропия (S) – термодинамическая функция состояния, которая является мерой беспорядка, хаотичности, неупорядоченности в системе. Энтропия имеет размерность энергии, деленной на температуру. Выражают в [ДЖ/моль*кельвин]. S возрастает при переходе в-ва из кристаллического состояния в жидкое и из жидкого в газообразное, при растворении кристаллов, при расширении газов, при хим.взаимодействиях, приводящих к увеличению числа частиц, и прежде всего частиц в газообразном состоянии. Напротив, все процессы в результате которых упорядоченность системы возрастает(конденсация, полимеризация, сжатие, уменьшения числа частиц), сопровождаются уменьшением энтропии.

Энергия Гиббса(G)- называемая также изобарно-термическим потенциалом или свободной порцией при постоянном давлении. G связана с H,S,T: G=H-TS. Если реакция осуществляется при постоянных P и Т, то G=H-TS. При постоянстве температуры и давления хим.реакции могут самопроизвольно протекать только в таком направлении, при котором энергия Гиббса системы уменьшается. При низких температурах самопроизвольно могут протекать экзотермические реакции, а при высоких – реакции сопровождающиеся влечение энтропии.Внутренняя энергия(U) – энергия межмолекулярных внутримолекулярных взаимодействий. Она складывается из кинетической и потенциальной энергий частиц. Кинетическая- энергия поступательного, колебательного и вращательного движения частиц. Потенциальная - обусловлена силами притяжения и отталкивания, дейст. между частицами. U зависит от состояния в-ва. Энергия – мера способности совершать работу или передавать тепло.Температура-- свойство, определяющее направление перехода теплоты от одного объекта к другому.Количество теплоты — энергия, которую получает или теряет тело при теплопередаче.

Передача теплотыпередача энергии, вызываемая разностью температур между системой и ее окружением или между одной системой и другой системой.Работа - форма передачи энергии от одной системы к другой или от системы к ее окружению.

Функции состояния связаны между собой математическими соотношениями – уравнениями состояния.

Уравнение состояния идеального газа:

PV=nRT

Уравнение Ван дер Ваальса: