Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
KSE_3.doc
Скачиваний:
448
Добавлен:
21.03.2015
Размер:
946.18 Кб
Скачать

5. Красный свет не засвечивает фотопленку и фотобумагу потому, что …

энергия его фотонов мала по сравнению с энергией фотонов синего или зеленого света, и ее не хватает, чтобы инициировать фотохимическую реакцию

энергия его фотонов велика по сравнению с энергией фотонов синего или зеленого света, и фоточувствительный центр в эмульсии не способен ее поглотить

длина его волны велика по сравнению с длиной волны синего или зеленого света, и вследствие этого его нельзя рассматривать как поток частиц-фотонов

длина его волны мала по сравнению с длиной волны синего или зеленого света, и вследствие этого он полностью отражается от поверхности фоточувствительного материала

Решение:

Красный свет обладает наибольшей длиной волны во всем видимом диапазоне электромагнитного излучения. Соответственно, согласно формуле Планка энергия его фотонов минимальна. Поэтому объяснения, апеллирующие к большой энергии фотона и малой длине волны красного цвета, отпадают. Из оставшихся двух следует отбросить то, которое утверждает, что длинноволновый свет в принципе не способен проявить корпускулярную сторону своей природы. В действительности корпускулярно-волновой дуализм – всеобщее свойство материи, в том числе и длинноволнового электромагнитного излучения.

6. Квантовая механика дает …

вероятностное описание для всех материальных объектов

вероятностное описание для объектов микромира и детерминистское описание для объектов макромира

детерминистское описание для объектов микромира и вероятностное описание для объектов макромира

детерминистское описание для всех материальных объектов

Решение:

Квантовомеханическое описание – вероятностное по своей сути для всех объектов. Как и для любой статистической теории, для квантовой механики возможны ситуации, когда случайные отклонения от среднего (флуктуации) оказываются несущественными. В таких ситуациях оказывается возможным делать однозначные, детерминистские предсказания. Чаще всего такие ситуации реализуются для макроскопических объектов. Однако и для объектов макромира (и даже мегамира) возможны ситуации, когда квантовая механика не позволяет дать однозначных детерминистских предсказаний, например «кошка Шредингера» или квантовые флуктуации, приведшие к рождению и первичной инфляции нашей Вселенной.

Тема 18: Принцип возрастания энтропии

1.Энтропия системы может изменяться …

как в сторону увеличения, так и в сторону уменьшения, если система открытая

только в сторону уменьшения, если система изолированная

только в сторону увеличения, если система открытая

как в сторону увеличения, так и в сторону уменьшения, если система изолированная

Решение:

Второй закон термодинамики запрещает понижение энтропии изолированной системы. Все остальное не запрещено, то есть может происходить в реальности, в частности любое изменение энтропии системы открытой.

2. С точки зрения термодинамики, отапливать дома электрообогревателями крайне невыгодно, поскольку …

при этом высококачественная электрическая энергия целенаправленно превращается в низкокачественную тепловую

электрическую энергию трудно превратить в тепловую без больших потерь

это требует прокладки мощных линий электропередачи и строительства технически сложных и дорогих подстанций

электрообогреватели гораздо опаснее для здоровья населения, чем привычные батареи, по которым циркулирует горячая вода

Решение:

Современные электрообогреватели, например, масляные, не более вредны для здоровья, чем радиаторы центрального отопления. Превращение электроэнергии в теплоту не требует сложных устройств, и потому даже очень эффективные и мощные электрообогреватели стоят недорого. Строить линии электропередачи и подстанции тоже существенно дешевле, чем тянуть трубопроводы горячей воды, постоянно их ремонтировать, мириться с тем, что они обогревают не столько дома, сколько окружающую среду.

Однако с точки зрения термодинамики, электрообогреватели – чистое расточительство. Сначала на тепловой или атомной электростанции с большими трудностями превращают теплоту, получаемую от атомного реактора или сгорающего топлива, в электроэнергию, причем 60% и более этой теплоты бесполезно рассеивается в окружающей среде. Эти потери можно оправдать, если за счет полученной высококачественной электроэнергии делать что-нибудь сложное – например, питать компьютер, телевизор или прецизионный станок. Но если втыкать в розетку электрообогреватель и сразу перегонять высококачественную электроэнергию в теплоту …

Зачем, спрашивается, тогда нужны ЭЛЕКТРОстанции?

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]