Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ekzamen_-_itog.doc
Скачиваний:
617
Добавлен:
31.03.2015
Размер:
1.17 Mб
Скачать
  1. Питательные среды. Классификация. Компоненты питательных сред. Методы стерилизации.

Питательные среды по своему составу подразделяются на две группы: натуральные (естественные) и синтетические.

Натуральными называются среды, имеющие неопреде ленный химический состав, так как в них входят продукты растительного или животного происхождения, отходы различных производств. На натуральных средах хорошо развиваются многие микроорганизмы, так как в этих средах имеются, как правило, все компоненты, необходимые для их роста и развития.

Синтетическими называются среды, в состав которых входят только определенные химически чистые соединения, взятые в точно указанных концентрациях. Такие среды широко используются для исследований, связанных с изучением обмена веществ микроорганизмов.

По физическому состоянию среды подразделяются на жидкие, плотные и сыпучие.

Жидкие среды используются для накопления биомассы или продуктов метаболизма. Плотные среды готовят из жидких, добавляя агар-агар иди кремнекислый гель (силикагель). Агар-агар удобен тем, что большинство микроорганизмов не может использовать его в качестве субстрата и поэтому он является лишь уплотняющим средством. В холодной воде полисахарид нерастворим, но растворяется в ней при нагревании до высокой температуры (90-100° С). При охлаждении агаровая среда застывает в виде студня с гладкой поверхностью. Такие среды используются для выделения чистых культур, для хранения культур, количественного учета микроорганизмов и в ряде других случаев.

Сыпучие среды - разваренное пшено, перловая крупа, Отруби, пропитанные питательным раствором - используют в промышленной микробиологии для получения некоторых БАВ, например, ферментов.

В промышленности микробного синтеза широко используются чистые углеводы, а также природные и технические продукты, богатые углеводами. К ним относятся глюкоза, сахароза, лактоза, крахмал, кукурузная мука, меласса, зеленая патока.

Для приготовления питательных сред используются техническая глюкоза. Она содержит не менее 99,5% редуцирующих веществ (в пересчете на сухой остаток) и фактически представляет собой чистый углевод,

Сахароза - свекловичный или тростниковый сахар. Техническая сахароза, используемая в промышленности, содержит не менее 99,75% сахарозы, которая представляет собой дисахарид, состоящий из глюкозы и фруктозы.

Лактоза - молочный сахар. Она содержится только в молоке и в других природных продуктах не обнаружена. Получают лактозу из молочной сыворотки, которая образуется при производстве сыров, творогов, казеина. Лактоза представляет собой дисахарид состоящий из глюкозы и галактозы.

Крахмал - на 96-97% состоит из полисахаридов, кроме того, в нем присутствуют минеральные вещества и жирные кислоты. Полисахариды крахмала представлены двумя типами - амилазой (10-20%) и амилопектином (80-90%).

Крахмал получают из картофеля или кукурузы. Крахмалы разного происхождения значительно различаются по разветвленности цепей, степени полимеризации и некоторым другим свойствам. Под действием амилолитических ферментов крахмал расщепляется до глюкозы, которая в дальнейшем утилизируется продуцентом по гликолитическому или пентозофосфатному путям,

Кукурузную муку получают при разматывании зерен кукурузы. В промышленных средах кукурузная мука часто заменяет крахмал, являясь более дешевым сырьем. Кукурузная мука содержит: крахмал - 67-70%; другие углеводы (клетчатка, пептозаны, растворимые углеводы) - 10%; белки - 12%; зола - 0,9%.

Среди зольных элементов в небольшом количестве присутствуют ионы фосфора, калия, магния. Состав кукурузной муки может колебаться в значительных пределах в зависимости от сорта кукурузы, условий ее выращивания и хранения.

Меласса - отход сахарного производства. Она представляет собой маточный раствор, образующийся при отделении кристаллов сахарозы на центрифуге после третьей кристаллизации. По внешнему виду меласса - густая вязкая жидкость темно-коричневого цвета. Состав непостоянен и может колебаться в зависимости от почвенных и климатических условий выращивания свеклы, технологии ее переработки, условий транспортировки и хранении мелассы.

Нормальная меласса в среднем содержит: сухие вещества - 75-82%, сахароза - 45-50%, общий азот - 1,2-2,2%, зола 6-10%. В мелассной золе присутствует много калия, магния, кальция, железа, но сравнительно мало фосфора. Кроме того в мелассе содержится ряд аминокислот, витаминов группы В и органических кислот.

Зеленая патока - отход производства глюкозы их крахмала. Она содержит не менее 76% редуцирующих веществ, золы - не более 3,5%, сухих веществ - не менее 50%. Сахара зеленой патоки состоят в основном из глюкозы. Основная часть зольных элементов - хлористый натрий, образующийся при нейтрализации соляной кислоты, применяемой для гидролиза крахмала содой.

Азотное питание микроорганизмов по своему значению приближается к углеродному, хотя уступает последнему по объему. Азот входит в состав клеточных компонентов, которые обеспечивают жизнеспособность организмов. Источниками азотного питания для продуцентов БАВ служат различные азотсодержащие вещества неорганического и органического происхождения. Источниками минерального азота чаще всего являются соли аммония и азотной кислоты. В качестве органических источников азота в промышленности наиболее широко применяются кукурузный экстракт и соевая мука.

Кукурузный экстракт - это отход производства крахмала из кукурузы. По внешнему виду это густая жидкость темно-коричневого цвета с хлопьевидной взвесью или почти однородная. В состав кукурузного экстракта входят: азот общий - 6-8%; азот шинный - 1-3%; азот белковый - 0.8-2%; углеводы - 0-10%; органические кислоты - 15-20%; зола - не более 24%.

Основными элементами золы являются фосфор, калий, магний Кукурузный экстракт также содержит витамины группы В, некоторые ростовые вещества, биостимуляторы.

Соевую муку получают при размалывании соевых бобов, а также соевого жмыха и шрота, образующихся после извлечения соевого масла Соевая мука подразделяется на необезжиренную, полуобезжиренную и обезжиренную. Кроме того, соевая мука бывает дезодорированная (обработанная паром) и недезодорированная. Обработка паром позволяет увеличить срок хранения, и дезодорированная мука может храниться в течение года, а недезодорированная - 1,5 - 3 месяца.

Из основных компонентов соевой муки особое значение для процессов ферментации имеют азотсодержащие вещества. Азот соевой муки находится главным образом в составе белков, на долю которых приходится 40,5%. Кроме белков в соевой муке содержатся углеводы - до 25%; органические кислоты - 1,5%; зола 4,5-6,5%. В необезжиренной муке присутствует 19,5% жира. В состав золы входят ионы калия, фосфора, магния, кальция, а также ряд микроэлементов.

Минеральные компоненты играют важную роль в жизнедеятельности микроорганизмов. Содержание их в клетке относительно не велико, но функции чрезвычайно важны. Минеральные элементы в клетках микроорганизмов необходимы для регулирования осмотического давления, окислительно-восстановительных условий и величины рН. Они изменяют гидрофильность протоплазмы, а также играют и пластическую роль, входя в состав конструктивного материала клеток.

Минеральные элементы участвуют в формировании пространственной структуры биополимеров - белков и нуклеиновых кислот.

Одна из основных функций минеральных элементов - участие в ферментативном катализе. В настоящее время действие четвертой части всех ферментов в клетки связано с металлами. Минеральных состав питательной среды формирует распределение электрических зарядов на поверхности клетки. Обычно клетки микроорганизмов имеют отрицательный заряд. При добавлении в среду электролитов он снижается и тем сильнее, чем выше валентность добавляемого противоиона. Изменение электрического потенциала клеток может изменить их физиологическую деятельность, воздействовать на селективность клеточной мембраны, вызвать флокуляцию или флотацию клеток.

Конструкция и механизм действия системы стерилизации зависят от метода стерилизации биореактора, вспомогательного оборудования, питательных сред и воздуха.

Наибольшее значение имеют термический метод для стерилизации оборудования и сред и фильтрационный — для удаления микроорганизмов из вводимого в биореактор воздуха или другого газа. Как правило, для стерилизации сред и аппаратуры используют влажную термическую обработку с применением воды и пара. Такая обработка дает больший эффект, чем нагревание сухого биореактора. Чаще всего используют стерилизацию перегретым паром, вводимым под давлением непосредственно в аппарат или генерируемым в самом биореакторе. Однако в последнем случае среда, содержащая белки, пригорает к электронагревателю, размешенному в аппарате, поэтому реактор стерилизуют с нагретой дистиллированной водой, а среду стерилизуют отдельно.

Эффективность и быстрота уничтожения микрофлоры возрастают но мере повышения температуры: имеет место температурная зависимость, аналогичная уравнению Аррениуса для химических реакций. Высокая температура нагревающего агента (пара, витков спирали электронагревателя) обеспечивает быструю гибель термоустойчивых бактериальных спор, которые часто попадают в «островки теплоизоляции» — глыбки твердых субстратов, густые суспензии высокомолекулярных соединений и т. д.

В то же время по мере повышения температуры ощутимо возрастают энергозатраты на стерилизацию, усиливается отрицательное влияние нагревания на качество сред. Следовательно, необходимо найти оптимальную температуру, при которой достигается высокая надежность стерилизации и в то же время сводятся до минимума энергозатраты и порча стерилизуемого материала. Применение пара, подаваемого через змеевики без прямого контакта со средой, ограничивает эффективность стерилизации. Этот метод используется при стерилизации неводных сред, например масляных.

Нагревание вызывает химические превращения компонентов питательных сред. При 100°С и выше карбонильные группы сахаров вступают во взаимодействие с ионами аммония или с аминогруппами аминокислот и белков. При этом образуются неусваиваемые клетками продукты. Этот пример говорит о необходимости в некоторых случаях раздельной стерилизации компонентов питательной среды.

Разложение ряда веществ, например витаминов, вынуждает ограничить время и температуру для термической стерилизации соответствующих сред, а иногда — вовсе отказаться от нее, поэтому применяют химические дезинфицирующие средства или фильтрацию жидкостей. Фильтры, однако, быстро забиваются клетками микрооорганизмов и другими взвешенными частицами, чем обусловлено неудобство фильтрационного метода стерилизации жидких сред.

Иногда химические изменения субстратов в процессе термической стерилизации положительно влияют на качество сред. При стерилизации раствора, содержащего глюкозу, аминокислоты и фосфаты, путем фильтрации или путем раздельной термической обработки растворов перечисленных компонентов получается среда, малоподходящая для роста пропионовых бактерий. Напротив, совместная стерилизация аминокислот, фосфатов и глюкозы путем нагревания способствует росту этих бактерий.

Фильтрация воздуха или другого газа обычно обходится без частой смены фильтров, поскольку в них содержание взвешенных частиц меньше, чем в жидких средах. Из фильтров различных типов наиболее перспективны .мембранные фильтры из тефлона с диаметром пор около 0,2 мкм. Такие фильтры эффективно задерживают частицы с размерами, в 100 раз меньшими указанного диаметра пор. Это связано в основном с броуновским движением частиц в воздухе, отклоняющим их от прямолинейной траектории, что обусловливает высокую вероятность столкновения частиц со стенками пор и их адсорбцию. Вследствие этого фильтрация приводит к освобождению воздуха не только от бактерий и их спор, но и от бактериофагов и других вирусов (R. S. Conway, 1984, Т. Leahy, R. Gabler, 1984). На второй план отступает применение фильтров других видов, сложенных из гранул активированного угля или волокон стеклянной ваты, вискозы, целлюлозы.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]