Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ekzamen_-_itog.doc
Скачиваний:
617
Добавлен:
31.03.2015
Размер:
1.17 Mб
Скачать

64.66.Протеомика и геномика. Характеристика. Значение для целей фармации.

В последние годы родилась новая отрасль генетики - геномика, изучающая не отдельные гены, а целые геномы. Достижения молекулярной биологии и генной инженерии дали человеку возможность читать генетические тексты вначале вирусов, бактерий, дрожжевых грибков, многоклеточных животныx. Например, знание геномной структуры патогенных бактерий очень важно при создании рационально сконструированных вакцин, для диагностики и других медицинских целей.

Последние достижения в области секвенирова-ния и развитие технических средств для обработки большого количества клонов в библиотеке генов позволили ученым исследовать сразу весь геном организма. Сейчас определены полные последовательности многих видов, в том числе большинства так называемых модельных генетических организмов, таких как Е. coli; круглого червя Caenorhabditis elegans, и, конечно, классического объекта генетики, плодовой мушки Drosophila melanogaster. В 1990-х годах, несмотря на ряд неурядиц и разногласий, был начат проект по исследованию человеческого генома («Геном человека»), средства на который выделил Национальный институт здоровья. В феврале 2001 года большая группа исследователей во главе с Дж. Крэй-гом Вентером из частной лаборатории «Селера Дже-номикс» сделали заявление о предварительной расшифровке человеческого генома. Результат их работы был опубликован 16 февраля 2001 года в журнале «Science».

Другая версия, которую представила группа из Международного консорциума по секвенированию человеческого генома, была напечатана 13 февраля 2001 года в журнале «Nature».

Временем зарождения геномики можно считать середину XX века, когда генетики составили карты всех хромосом модельных организмов, основываясь на частоте рекомбинаций (см. гл. 8). Однако на этих картах были показаны лишь те гены, для которых были известны мутантные аллели, и поэтому полными такие карты назвать нельзя. Полное сек-венирование ДНК позволяет выявить местонахождение всех генов организма, а также установить последовательность оснований между ними.

Геномика делится на структурную и функциональную. Структурная геномика ставит целью выяснить, где именно в хромосомной ДНК расположены те или иные гены. Компьютерные программы распознают типичные для генов начала и концы, отбирая те последовательности, которые, вероятнее всего, и являются генами. Такие последовательности называют открытой рамкой считывания (ореп readingframe, OFR). Те же компьютерные программы могут опознавать и типичные интроны в OFR-noc-ледовательностях. После того как интроны из потенциального гена вычленены, по оставшемуся коду компьютер определяет последовательность аминокислот в белке. Затем эти потенциальные белки сравнивают с теми белками, функции которых уже 'известны и последовательности которых уже занесены в базу данных. Благодаря такому роду программ был установлен так называемый эволюционный консерватизм: то, что для большинства генов в разных организмах имеются схожие гены. С позиций эволюционного развития такое сходство объяснимо: если белок какого-то одного биологического вида хорошо приспособлен для своих функций, то его ген передается в том же виде или с небольшими изменениями к видам, происходящим от начального. Эволюционный консерватизм позволяет опознавать гены, родственные данному гену в других организмах. Сравнив полученный ген с уже известными, зачастую можно определить и его функцию, обязательно проверив ее в последующих экспериментах.

После определения всех потенциальных генов приступают к составлению генетической карты. Генетическая карта человека — довольно запутанная и пестрая диаграмма, так как каждый ген отмечают определенным цветом в зависимости от его функции, устанавливаемой в сравнении с другими известными генами. Большинство генов человека, как и вообще гены всех эукариот, имеют большие интроны. По приблизительным оценкам, среди опубликованных последовательностей около трети или четверти приходится на интроны. Любопытно, что только около 1,5% всего генома человека (около 2,9 х 10 пар оснований) содержат последовательности (экзоны), кодирующие белки. Кроме того, похоже, что эта ДНК содержит только 35 000—45 000 генов, а это меньше предсказанного. Нам еще предстоит понять, как относительно малое количество генов кодирует такой сложный организм.

От двух третей до трех четвертей генома приходится на обширные участки между генами, что тоже представляет собой разительный контраст с геномом бактерий. Эти промежутки, конечно же, не пусты, но их содержание до сих пор во многом остается загадкой. Большое количество последовательностей между генами приходится на долю повторяющейся ДНК, то есть на многократно повторяющиеся последовательности длиной от нескольких сотен до многих тысяч нуклеотидов. Одни типы повторяющейся ДНК собраны в скопления, другие разбросаны по всему геному. Большинство повторяющейся ДНК не функционально, но она произошла из последовательностей, которые, вероятно, имели какую-то функцию. Большой класс повторяющейся ДНК произошел от транспозонов, то есть сегментов ДНК, способных перемещаться по геному. Такого рода последовательности еще называют мусорной ДНК, но, скорее всего, мы еще не знаем о выполняемых ими важных функциях. Другой класс повторяющейся ДНК охватывает неактивные геномы вирусов, которые когда-то паразитировали в клетках человека и вставили свои последовательности в человеческие хромосомы.

Количество копий повторяющейся ДНК у разных людей неодинаково, поэтому их можно использовать для установления личности, в том числе и в судебной медицине.

Функциональная геномика — это исследование функций генов на уровне всего генома. Хотя потенциальные гены можно определить по сходству с генами, выполняющими известные функции в других организмах, все догадки следует проверять на примере изучаемого организма. В некоторых модельных организмах, например в пищевых дрожжах, можно систематически отключать функцию генов по очереди. Выключение гена происходит посредством замены его функциональной формы стертой формой на особом векторе. Затем получают штамм с выключенным геном и оценивают его фенотип. В ходе продолжающейся программы по анализу генома пищевых дрожжей по очереди было выключено несколько тысяч генов.

Другой метод функциональной геномики заключается в том, что изучают механизм транскрипции на уровне всего генома. Данный метод основан на предположении, что большинство биологических явлений представляют собой сложные процессы с участием многих генов. Особый интерес у исследователей вызывают процессы, связанные с развитием организма. Если транскрипцию генов изучать в разных условиях роста, то можно составить представление о полных генетических путях развития организма.

Но как можно изучать транскрипцию на уровне всего генома? Опять-таки в этом ученым помогают новые технологии. ДНК каждого гена в геноме или некоторой части генома помещают на поверхности небольших стеклянных пластин, расположенных по порядку. Потом их подвергают воздействию со стороны всех видов мРНК, обнаруженных в клетке данного организма. ДНК на пластинках получают двумя способами. При одном способе все мРНК подвергаются обратной транскрипции, чтобы получить короткие комплементарные молекулы ДНК, соответствующие одному гену. При другом способе гены (или части генов) синтезируются по одному основанию за раз на определенных участках пластин. Синтез осуществляют роботы, открывающие и закрывающие поверхность стекла в определенном порядке. Пластинки с геномом многих организмов можно приобрести в химических компаниях.

Для изучения механизма транскрипции все мРНК определенной стадии развития помечают флуоресцентной меткой и распределяют их по поверхности пластин. Эти мРНК прикрепляются к соответствующим им ДНК, и их можно опознать по светящимся участкам. Поскольку положение каждой ДНК отдельного гена на пластинах известно заранее, компьютер определяет, какие гены транскрибируются на данной стадии развития.

Итак, с помощью этих и других технологий генетики начинают выяснять общие модели организации живого с функциональной и структурной стороны. Для обработки громадного количества информации появилась особая ветвь науки — биоинформатика. Ближайшие десятилетия обещают стать временем поистине великих открытий.

66. Протеомика — наука, основным предметом изучения которой являются белки, их функции и взаимодействия в живых организмах, в том числе — в человеческом. Основная задача протеомики — количественный анализ экспрессии белков в клетках в зависимости от их типа, состояния или влияния внешних условий[1]. Протеомика осуществляет сравнительный анализ больших групп белков — от всех белков, вовлеченных в тот или иной биологический процесс[2] до полного протеома.

Применения в медицине. Сравнение протеомов здорового и больного пациентов позволяет выявить конкретные белки, потенциально вовлеченные в развитие болезни, которые в дальнейшем могут стать мишенями для новых лекарственных препаратов. Кроме того, если такие белки уже известны, анализ протеома может использоваться как метод ранней диагностики. Анализ протеома дает больше информации, чем сравнение уровня экспресии по мРНК, так как учитывает еще и посттрансляционные модификации и альтернативный сплайсинг.

67.Контроль и управление биотехнологическими процессами. Контроль основных параметров процесса (состав технологических растворов, газов, рН среды и т.д.).

Обеспечение качества лекарственных средств является чрезвычайно сложной и социально значимой проблемой, которая в большинстве стран мира находится под непосредственным контролем государства.

Многолетний опыт показал, что гарантировать качество лекарственных средств можно лишь с помощью более строгого регламентирования всех этапов: доклинических исследований, клинических испытаний, производства и реализации (оптовой и розничной).

На этапе доклинических исследований, когда проводится изучение фармакологической активности, токсичности и других характеристик потенциальных лекарственных средств на животных (биологических тест - системах), одной из основных задач является обеспечение объективности получаемых данных. Для достижения этой цели необходимо строго соблюдать правила надлежащей лабораторной практики - Good Laboratory Practice (GLP), которые впервые были разработаны и внедрены в США.

Правила GLP определяют методологии, уровень организации и проведения доклинических исследований биотехнологических продуктов и лекарственных средств. Этими правилами регламентируются требования к административной структуре испытательного центра, к квалификации и обязанностям специалистов, организация рабочих мест, документированию проводимых исследований, испытуемым веществам, эталонным препаратам, биомоделям и пр.

На систему GLP опираются в случаях испытания веществ: на микробную обсемененность, тест на пирогенность; острую, подострую и хроническую токсичность, на специфическую токсичность (канцерогенность. антигенность, лекарственную зависимость, повреждение зародышевых клеток; раздражение слизистых оболочек, кожи и в месте введения вещества; мутагенность, тератогенность - от греч. Teratos -чудовище, урод; тератотоксичность). на безопасность для микроорганизма при введении in vivo (абсорбция, распределение, скорость выведения, метаболизм); проводят фармакологические испытания с оценкой фармакокинетики (действие изучаемого лекарственного вещества на организм) и фармакодинамики (изучение силы действия лекарственного вещества).

Правилами GMP установлены требования к организационной структуре предприятия, обязанностям отдела контроля качества, квалификации персонала, зданиям и помещениям (особенности проекта и конструкции, освещение, вентиляция, водоснабжение), оборудованию (размеры, размещение, порядок эксплуатации), проведению контроля за компонентами и укупорочными средствами (приемка, хранение, браковка, повторное тестирование), организаций технологического процесса (письменные инструкции, загрузка компонентов, маркировка оборудования, взятие пробы и анализ материалов, находящихся в процессе переработки, контроль за микробной контаминацией), упаковке и этикетированию, хранению и отгрузке, лабораторному контролю, регистрации и отчетности.

Важное значение в правилах GMP придается валидации фармацевтического производства. Под валидацией понимается документированное подтверждение соответствия условий производства, оборудования, технологического процесса, качества промежуточных и готовых фармацевтических продуктов требованиям действующей нормативной документации. В необходимых случаях предусматривается проведение повторной валидации (ревалидация).

При производстве биотехнологических средств необходимо избегать изготовления немедицинской продукции в зонах и на оборудовании, предназначенных для изготовления фармацевтической продукции. При работе с сухими материалами и продуктами необходимы меры предосторожности для предупреждения возникновения, накопления и распространения пыли, что может привести к перекрестному загрязнению изготавливаемых продуктов или к их микробному загрязнению. Микробы могут попадать в воздух и на частицы пыли из обсемененных ими материалов и продуктов при изготовлении, с загрязненных оборудования и одежды, кожи работающих людей. Перекрестное загрязнение может быть предотвращено изготовлением каждого целевого продукта в раздельных зонах (пенициллины, живые вакцины и другие БАВ) или по крайней мере, разделением изготовления их по времени: обеспечением соответствующих воздушных шлюзов; ношением защитной технологической одежды; использованием средств эффективной деконтамииации оборудования, стен, и пр.; использованием «закрытых систем» производства и т.д.

Необходимо проверять правильность и надежность сочленения трубопроводов и другое оборудование, используемое для транспортировки продуктов (материалов) из одной зоны в другую. Дистиллированная или деионизированная вода, поступающая по трубам, должна соответствовать санитарно-микробиологическим нормативам. Операции по техническому обслуживанию или ремонту не должны сказываться на качестве продукции.

Контроль качества продукции касается процесса проб, проведения исследований, документации и пр. Все исследования должны проводиться согласно утвержденным инструкциям для каждого материала или продукта.

Забор проб осуществляют таким образом, чтобы не загрязнить их или не подвергнуть нежелательному воздействию, сказывающемуся на качестве продукта или, напротив, чтобы отбираемый материал не был токсичным (вредным) для здоровья оператора.

Для каждой партии продукта до выпуска должна иметься лабораторная документация с подтверждением соответствия конечного продукта спецификациям.

Из каждой партии целевого продукта оставляют пробы на хранение при рекомендуемых условиях сроком не менее года превышающего срок годности. Пробы должны храниться в таком количестве, чтобы можно было при необходимости провести как минимум два повторных исследования.

Внедрение правил GMP, носящих системный и профилактический характер, а также последующее инспектирование действующих предприятий государственными органами направлено на предотвращение дефектов, способных отрицательно повлиять на качество готовых лекарственных средств, в процессе их производства.

Согласно требованиям системы GMP все биотехнологические процессы должны проводиться в асептических условиях.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]