Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ekzamen_-_itog.doc
Скачиваний:
617
Добавлен:
31.03.2015
Размер:
1.17 Mб
Скачать
  1. Культуры животных клеток. Методы культивирования.

Любые клетки животного организма происходят из оплодотворенной яйцеклетки, которая со временем развивается и дифференцируется.

Зародышевый диск включает эктодерму, эндодерму и мезодерму, из которых впоследствии образуются все ткани макроорганизма. Но как только какую-либо ткань перевести в культуру, то наступает дедифференциация клеток и различить их становится делом трудным или невозможным, и поэтому регистрацию их ведут почти исключительно по происхождению. Например, для исследования в области онкологии важны культуры раковых клеток, о которых имеются сообщения в научной литературе. Такие клетки получены от больных раком легкого и щитовидной железы. В 1986 г. в Японии впервые получен в культуре штамм клеток рака желчного пузыря. Он был стабилен после 103 пассажей in vitro, сохранил прежнее число хромосом в пределах 76—101. Индуцируемый им опухолевый процесс и первичный рак желчного пузыря оказались тождественными по гистограмме. Подобный штамм оказался полезным при оценке противоопухолевых средств.

Любой штамм, представляющий определенную ценность для научно-практического использования, должен иметь следующие характеристики:

1) качество исходной ткани - нормальная или опухолевая (для опухолевой необходим показатель доброкачественности или злокачественности),

  1. тип ткани — эмбриональная или зрелая,

  2. принадлежность ткани — вид животного,

  3. источник ткани — орган,

  4. тип клетки (если известно),

  5. наименование штамма (буквенное — не более 4 букв и серия цифр нумерации),

  6. номер клона, если штамм клонировался,

  7. источник информации (ссылка на оригинальную публикацию).

Все способы выращивания клеток животных могут быть соотнесены либо к интактным (нетрансформированным с помощью вирусов), либо к вирусотрансформированным клеткам. Успех культивирования первых во многом обусловлен наличием и плотностью адгезинов, благодаря которым они проявляют эффект "заякорива-ния" на подлежащей поверхности стекла, металла или пластика. Однако такие клетки не растут в суспензионных культурах.

Вирусотрансформированные клетки животных, напротив, хорошо растут в виде суспензионных культур и хуже или совсем не растут в адгезированном состоянии.

Имеются такие штаммы животных клеток, которые могут расти и в прикрепленном состоянии, и в виде суспензии. Прикрепившиеся клетки размножаются, растут и развиваются до тех пор, пока не сольются в монослой, то есть плотность клеток выступает тормозным сигналом. Однако при смене питательной среды на новые порции наблюдается дальнейшее разрастание клеток в форме нескольких слившихся слоев. Подобного результата можно добиться при использовании других факторов воздействия на клеточные культуры (гормоны, ферменты, рН и т. д.). Тем не менее, на практике широко пользуются монослойными культурами.

Глубинное выращивание клеток в монослое. Рост клеток в виде монослоя зависит от адгезивных белков — фибронектинов (от лат. fibra — нить, nectere — связывать или соединять), обеспечивающих межклеточную адгезию, прикрепление клеток к подложке и направляющих их перемещения. В животном организме клетки, способные к перемещениям (особенно в период эмбрионального развития, при заживлении ран), и связанные с базальными мембранами, содержат на своей поверхности крупномолекулярные гликопротеиновые молекулы фибронектина, открытого в 1973 г. Р.О.Хайнсом (Англия), К. Гамбергом и С.-И. Хакомори (США) при изучении нормальных и опухолевых клеток. Фибро-нектин, полимеризуясь, образует длинные нити вокруг клетки, которые контактируют с клеточной мембраной и связываются с цитоскелетным белком-актином.

Молекула фибронектина состоит из двух субъединиц с ММ около 250 кДа, содержащих небольшие по размеру домены и соединенных на одном конце двумя S—S-мостиками. Размеры одной субъединицы 60—70x2—3 нм; на эту длину приходится от 2145 до 2445 остатков аминокислот. Каждый домен отвечает за одну функцию фибронектина, например, за соединение с фибрином, другой домен — за прикрепление к пластику и т. д.

Доказано, что фибронектин имеется у всех представителей царства Ammalia. Амфотерный гликопротеин-фибронектин в изолированном виде выраженно стимулирует адгезию, если добавлять его к питательной среде в концентрации порядка 1—5 мкг/мл. Амфолит в данном случае выступает мостиком между отрицательно заряженной поверхностью животной клетки и субстратом, несущим отрицательный или положительный заряд. Свободная энергия поверхности твердого носителя может быть высокой (чистые поверхности стекол, металлов, металлических окислов) или низкой (поверхности из органических полимеров), хотя понятно, что при соответствующих обработках низкоэнергетические поверхности трансформируются в высокоэнергетические.

В качестве связующих мостиков можно применять ионы кальция или магния.

Наряду с плотностью заряда в прикрепляемости клеток большое значение имеют характеристики субстрата: гидрофильность его поверхности (смачиваемость), протяженность и горизонтальность. Распластываемость клеток на подложке будет выше, если число отрицательных зарядов оказывается не ниже 5 на площади 10 нм2. Адгезивные свойства более выражены для смачиваемых поверхностей в сравнении с гидрофобными, по протяженности они должны быть больше нормальной длины клеток; субстраты с искривленной поверхностью хуже гладких — растущие клетки распространяются в направлении наименьшей кривизны субстрата (здесь существен вклад цитоскелета, см.). Если, например, прикрепление клеток к агар-агару принять за единицу, то к тефлону они прикрепляются в 5 раз лучше, к полиэтилену — в 8 раз, к полипропилену — в 9 раз, к резине — в 12 раз, к алюминию — в 15 раз, к стеклу — в 16 раз, а к стали и полистирену — в 20 раз.

Крупномасштабное культивирование животных клеток в монослое нацелено на получение наибольшей концентрации клеток в наименьшем объеме газовой фазы.

Выбранные клетки выращивают в строго, асептичных условиях в специальном оборудовании при медленном вращении роллерной системы или покачивании для смывания большей площади культуральной среды. Клетки то погружаются в жидкую фазу, то в газообразную. При этом с избытком обеспечиваются их дыхательные потребности в кислороде.

Во время цикла культивирования клеток должны учитываться разные параметры. Одни из них относятся к числу константных, другие — к числу вариабельных. Константными являются качество материала, форма и объем культиватора, вариабельными — скорость вращения или покачивания, качество и объем среды, тип клеток и размер (величина) посевного материала, рН и температура среды, снабжение кислородом и содержание СО2 в культиваторе, окислительно-восстановительный потенциал и концентрация основных источников питания. Первые три вариабельных показателя можно поддерживать постоянными, переводя их в разряд константных.

Естественно ожидать, что среды для клеток животных должны отличаться от сред, используемых, например, для прокариот. На начальных этапах развития зообиотехнологии обязательным было добавление сывороток к средам, применяемым в лабораторных и производственных условиях. Сыворотки обеспечивали клетки необходимыми гормонами (глюкокортикоиды, инсулин, половые гормоны, простагландины и др.), ростовыми факторами (эпйдермаль-ным, фибробластным, Т-клеточным, тромбоцитарным, опухоленек-ротическим и др.), факторами адгезии (коллаген, фибронектин, ламинин), белками (альбумин, трансферрин, фетуин), микроэлементами и липидами, для выживания in vitro. Обычно используют фетальную бычью сыворотку (ФБС). Высоким качеством отличаются сыворотки, рекомендуемые фирмой Sigma (США). Некоторые из них по качеству (для отдельных линий клеток) превосходят ФБС, например, сыворотка крови новорожденных телят в возрасте до 10 дней и менее, сыворотка от телят возраста менее 10-месячного, лошадиная сыворотка от жеребцов, кастрированных за год до взятия крови.

Оптимальные показатели рН и температуры зависят от происхождения и качества клеточных линий. Так, для клеток млекопитающих концентрацию водородных ионов поддерживают в пределах рН от 7,2 до 7,4, а температуру — в пределах + 36—+ 37,5°С. Поддержание рН осуществляют обычно за счет буферных систем [(СО2—NaHCO3), трис- и др.], а температуру — с помощью терморегуляторов.

Контроль за развитием клеток проводят с помощью прямых (подсчет) и непрямых методов (по мутности, по подсчету ядер, по определению общего белка).

Глубинное выращивание клеток в суспензионных культурах. Площадь выращиваемых клеток можно существенно увеличить при использовании микроносителей, суспендируемых в •питательной среде и на поверхности которых клетки закрепляются, а затем разрастаются в виде монослоя. Такие суспендированные микроносители-с клетками моделируют глубинные культуры, например, микроорганизмов. Следовательно, в таких системах совмещаются монослойные и суспензионные культуры животных клеток.

Подход к выбору сред и контролируемого параметра культивирования остается прежним. Клетки после выращивания отделяют от микроносителей центрифугированием (в том числе — в градиенте плотности), фильтрованием, или, чаще, обработкой трипсином с последующими промыванием и сепарированием.

Суспензионные клетки на микроносителях применяют в целях получения вирусных вакцин (против бешенства, полиомиелита, ящура).

Клеткам животных в глубинных культурах почти во всех случаях требуется защитная матрица, функцию которой берут на себя белки сыворотки крови, добавляемой в среду культивирования. Этим еще раз подтверждается более высокая ранимость животных клеток по сравнению с микробными и растительными клетками. Тем не менее, основные подходы к выбору оборудования и к реализации биотехнологических процессов с использованием животных клеток во многом аналогичны с таковыми в микробной биотехнологии. Например, системы культивирования в обоих случаях могут быть хемо- или турбидостатными, циклическими, непрерывными или полунепрерывными.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]