Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
тиун. рук-во.DOC
Скачиваний:
55
Добавлен:
11.04.2015
Размер:
2.02 Mб
Скачать

Если случайная величина распределена по закону Пуассона, то

М(Х) = , Д(Х) = . (6.15)

Дискретное распределение случайной величины Х, определяемое при фиксированном >0 формулой

Р(Х=а+bm)=(6.16)

называется распределением пуассоновского типа. Из него получается распределение Пуассона при а=0, b=1.

Относительная частота W появления события А в независимых испытаниях есть случайная величина, которая может принимать значения 0, ,, …, 1 с вероятностями

Р,m=0, 1, …, n.

Числовые характеристики относительной частоты появления события А в n независимых испытаниях, в каждом из которых оно может наступить с постоянной вероятностью р, имеют следующие значения:

М(W)=р, Д(W) = (6.17)

Р е ш е н и е т и п о в ы х з а д а ч

Задача 1. Составить закон распределения числа выпавших очков при однократном подбрасывании игральной кости. Определить тип распределения и найти числовые характеристики этой случайной величины.

Решение. Пусть Х – число очков, выпавших при однократном бросании игральной кости. Возможные значения этой случайной величины х1=1, х2=2, х3=3, х4=4, х5=5, х6=6. Ясно, что Р(Х=хi)=1/6 для любого i=1,…,6. Следовательно, ряд распределения имеет вид

Х

1

2

3

4

5

6

Р

1/6

1/6

1/6

1/6

1/6

1/6

Получили пример равномерного дискретного распределения (см.формулу (6.1)). Его числовые характеристики находятся по формулам (6.3) и (6.4):

М(Х) = Д(Х) =

Задача 2. Среди изготовленных за смену бригадой сборщиков десяти магнитофонов шесть – высшего качества. Для контроля случайным образом выбрали 3 изделия. Найти математическое ожидание, дисперсию и среднее квадратическое отклонение случайной величины Х – числа изделий высшего качества среди отобранных. Определить тип распределения.

Решение. Случайная величина Х принимает значения 0, 1, 2, 3. Вероятность того, что среди трех изделий, отобранных для контроля качества, окажется равно m(m=0, 1, 2, 3) изделий высшего качества, вычисляется по формуле (6.5). Тогда

Р(Х=0) =

Р(Х=1) =

Р(Х=2) =

Р(Х=3) =

Таким образом, закон распределения этой случайной величины имеет вид

Х

0

1

2

3

Р

1/30

9/30

15/30

5/30

Это есть пример гипергеометрического распределения. Математическое ожидание и дисперсию найдем по формулам (6.6):

М(Х) = Д(Х) =

Тогда (Х) =

Задача 3. Вероятность того, что покупатель, зашедший в обувной магазин, приобретет обувь 37 размера равна 0,4. Составить закон распределения случайной величины, выражающей число покупателей, которым необходима обувь 37 размера из первых зашедших в магазин шести покупателей. Определить тип распределения, математическое ожидание и дисперсию этой случайной величины.

Решение. Обозначим через Х случайную величину – число покупателей, которым необходима обувь 37 размера, среди первых шести вошедших. Она может принимать значения: 0, 1, 2, 3, 4, 5, 6. По условию задачи р=0,4, q=0,6. По формуле Бернулли (6.7) определим вероятности, с которыми Х принимает соответственно значения 0, 1, 2, 3, 4, 5, 6:

Р(Х=0) = Р6 (0) = (0,4)0 (0,6)6 = 0,046 656;

Р(Х=1) = Р6 (1) = (0,4)1 (0,6)5 = 0,186 624;

Р(Х=2) = Р6 (2) = (0,4)2 (0,6)4 = 0,31 104;

Р(Х=3) = Р6 (3) = (0,4)3 (0,6)3 = 0,27 648;

Р(Х=4) = Р6 (4) = (0,4)4 (0,6)2 = 0,13 824;

Р(Х=5) = Р6 (5) = (0,4)5 (0,6)1 = 0,036 864;

Р(Х=6) = Р6 (6) = (0,4)6 (0,6)0 = 0,004 096.

Случайная величина имеет биномиальный закон распределения. Тогда числовые характеристики М(Х) и Д(Х) вычисляются по формулам (6.9). Имеем: М(Х) = 60,4=2,4; Д(Х) = 60,40,6=1,44.

Задача 4. Охотник ведет стрельбу по дичи из автоматического ружья до попадания. Вероятность поражения дичи при каждом выстреле равна 0,7. Определить математическое ожидание и дисперсию числа произведенных выстрелов.

Решение. Случайная величина Х, выражающая число произведенных охотником выстрелов по дичи, может принимать следующие значения: х1=1, х2=2, х3=3, … .Охотник выстрелит по дичи один раз, если он в нее попадет, т.е. Р(Х=1)=р=0,7. Охотнику потребуется два выстрела, если при первом выстреле будет промах, а при втором – попадание в дичь. Вероятность такого случая равна qр=0,30,7=0,21. Следовательно, Р(Х=2)=0,21. Три выстрела потребуется охотнику, если при первом и втором выстрелах он промахнется, а при третьем попадет в дичь. Вероятность этого случая Р(Х=3)= q2р=(0,3)20,7=0,063. И так далее. Таблица распределения вероятностей для числа произведенных охотником выстрелов по дичи имеет вид

Х

1

2

3

  

Р

0,7

0,21

0,063

  

Это есть пример геометрического распределения. Определим математическое ожидание и дисперсию по формулам (6.12):

М(Х) = 10/7, Д(Х) = 30/49.

Задача 5. Вероятность того, что расход воды на предприятии не превысит в рабочий день нормы, равна 0,8. Определить математическое ожидание и дисперсию случайной величины Х – числа дней, в которые произойдет перерасход воды среди первых пятнадцати дней месяца.

Решение. Случайная величина Х имеет биномиальное распределение. По условию задачи n=15, р=0,2, q=0,8. По формулам (6.9) находим математическое ожидание и дисперсию:

М(Х) = 150,2=3; Д(Х) = 150,20,8=2,4.

Задача 6. На автоматическую телефонную станцию за некоторое время Т поступает в среднем два вызова. Считая, что число вызовов в течение любого промежутка времени Т распределено по закону Пуассона, найти вероятности того, что в течение этого времени Т на телефонную станцию поступит m вызовов (m=0, 1, 2, …).

Решение. В качестве параметра  распределения Пуассона надо взять среднее число вызовов за время Т (=2). Применяя формулу (6.13), получим:

Р(Х=0) = 0,135 335;

Р(Х=1) = 0,27 067;

Р(Х=2) = 0,27 067;

Р(Х=3) = 0,180 447.

И так далее.

З а д а ч и

  1. Случайная величина означает число появлений герба при одном бросании монеты. Написать закон распределения вероятностей, определить его тип, найти числовые характеристики случайной величины.

  2. Среди 15 измерительных приборов имеется 5 недостаточно точных. Для измерения наудачу выбирают 4 прибора. Случайная величина Х – число точных приборов среди отобранных. Определить вид закона и найти числовые характеристики.

  3. Из 20 дипломных работ, среди которых 5 оценены аттестационной комиссией на «отлично», проверочная комиссия наугад отобрала 3 работы. Случайная величина Х – число дипломных работ, оцененных на «отлично» и оказавшихся в выборке. Определить вид закона этой случайной величины и найти ее числовые характеристики.

  4. Покупатель приобрел 50 лотерейных билетов, вероятность выигрыша на каждый из которых равна 0,04. Х – число лотерейных билетов, на которые могут выпасть выигрыши. Указать тип распределения этой случайной величины. Найти М(Х) и (Х).

  5. Вероятность попадания спортсмена по летящей мишени при каждом выстреле равна 0,8. Определить вид распределения и числовые характеристики случайной величины Х – числа попаданий спортсменом, если он произвел 20 выстрелов.

  6. Для всхожести посеяли 80 семян перца. Гарантия всхожести составляет 90%. Найти математическое ожидание и среднее квадратическое отклонение числа взошедших семян.

  7. Производится стрельба по цели до первого попадания с вероятностью попадания в отдельном выстреле, равной 0,2. Случайная величина означает число произведенных выстрелов. Указать, к какому теоретическому виду она относится. Найти математическое ожидание и дисперсию числа произведенных выстрелов.

  8. Вероятность того, что из изготовленных изделий отдельно взятое изделие окажется дефектным, постоянна и равна 0,02. Контролер проверяет изделия до обнаружения дефектного. Случайная величина Х- число изделий, подвергнутых осмотру. Определить теоретический тип распределения и найти математическое ожидание случайной величины.

  9. При некотором технологическом процессе в течение суток в среднем происходят три остановки. Число остановок при этом процессе в течение любых суток подчинено закону Пуассона. Найти вероятности, что в течение суток произойдет m остановок (m=0, 1, 2, …).