Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ТЭЦ ЭКЗАМЕН / ОТВЕТЫ(готовые).doc
Скачиваний:
401
Добавлен:
15.04.2015
Размер:
2.84 Mб
Скачать

Классический метод расчёта переходных процессов

Классический метод расчета переходных процессов основан на составлении и последующем решении (интегрировании) дифференциальных уравнений, составленных по законам Кирхгофа и связывающих искомые токи и напряжения послекоммутационной цепи и заданные воздействующие функции (источники электрической энергии. Преобразуя систему уравнений, можно вывести итоговое дифференциальное уравнение относительно какой-либо одной переменной величины x(t): . (4.2)

Здесь n – порядок дифференциального уравнения, он же – порядок цепи, коэффициенты ak > 0 и определяются параметрами пассивных элементов R, L, C цепи, а правая часть является функцией задающих воздействий.

В соответствии с классической теорией дифференциальных уравнений полное решение неоднородного дифференциального уравнения находится в виде суммы частного решения неоднородного дифференциального уравнения и общего решения однородного дифференциального уравнения: . (4.3)

Частное решение полностью определяется видом правой части f(t) дифференциального уравнения. В электротехнических задачах правая часть зависит от воздействующих источников электрической энергии, поэтому вид обуславливается (принуждается) источниками электрической энергии и называется принужденной составляющей .

Общее решение однородного дифференциального уравнения зависит от корней характеристического уравнения, которые определяются коэффициентами дифференциального уравнения, и не зависит от правой части. В прикладных задачах электротехникине зависит (свободно) от воздействующих источников и по этой причине называетсясвободной составляющей и полностью определяется параметрами пассивных элементов цепи, а физически процессом перераспределения запасов энергии электрического и магнитного полей в реактивных элементах цепи.

Таким образом, любая искомая величина в переходном режиме

. (4.3)

Свободную составляющую переходного процесса ищут в виде

, (4.4)

где n – порядок цепи, совпадающий с порядком дифференциального уравнения;

pk – корни характеристического уравнения (собственные числа цепи);

Ak – постоянные интегрирования.

Собственные числа линейных цепей либо действительные отрицательные, либо комплексные с отрицательными вещественными частями (т.е. находятся в левой полуплоскости комплексных чисел). Поэтому носит преходящий (асимптотически затухающий до нуля) характер.

В искомом решении надо уметь определять величины,n, pk, Ak.

13. Свободный и принужденный режимы. Постоянная времени цепи, определение длительности переходного процесса.

Как отмечалось в предыдущей лекции, линейная цепь охвачена единым переходным процессом. Поэтому в рассматриваемых цепях с одним накопителем энергии (катушкой индуктивности или конденсатором) – цепях первого порядка – постоянная времени будет одной и той же для всех свободных составляющих напряжений и токов ветвей схемы, параметры которых входят в характеристическое уравнение.

Общий подход к расчету переходных процессов в таких цепях основан на применении теоремы об активном двухполюснике: ветвь, содержащую накопитель, выделяют из цепи, а оставшуюся часть схемы рассматривают как активный двухполюсник А (эквивалентный генератор) (см. рис.1, а) со схемой замещения на рис. 1,б.

Совершенно очевидно, что постоянная времени здесь для цепей с индуктивным элементом определяется, как:

,

и с емкостным, как: ,

где - входное сопротивление цепи по отношению к зажимам 1-2 подключения ветви, содержащей накопитель энергии.

Например, для напряжения на конденсаторе в цепи на рис. 2 можно записать

,

где в соответствии с вышесказанным

.

Переходные процессы при подключении последовательной R-L-C-цепи к источнику напряжения

Рассмотрим два случая:

а) ; б).

Согласно изложенной в предыдущей лекции методике расчета переходных процессов классическим методом для напряжения на конденсаторе в цепи на рис. 3 можно записать

Тогда для первого случая принужденная составляющая этого напряжения

Характеристическое уравнение цепи , решая которое, получаем

.

В зависимости от соотношения параметров цепи возможны три типа корней и соответственно три варианта выражения для свободной составляющей:

1. или, где-критическое сопротивление контура, меньше которого свободный процесс носит колебательный характер.

В этом случае

2. - предельный случай апериодического режима.

В этом случае и

3. - периодический (колебательный) характер переходного процесса.

В этом случае и

где - коэффициент затухания;-угловая частота собственных колебаний; - период собственных колебаний.

Для апериодического характера переходного процесса после подстановки (2) и (3) в соотношение (1) можно записать

.

Соседние файлы в папке ТЭЦ ЭКЗАМЕН